改进蚁群算法与Dijkstra算法结合MAKLINK图理论实现二维空间最优路径规划,改进蚁群算法与Dijkstra算法结合MAKLINK图理论实现二维空间最优路径规划,蚁群算法 改进蚁群算法 Di

dENnTvhGkVdDZIP蚁群算法改进蚁群算法算法遗传算法人工势场法实现  702.63KB

资源文件列表:

ZIP 蚁群算法改进蚁群算法算法遗传算法人工势场法实现 大约有11个文件
  1. 1.jpg 109.79KB
  2. 文章标题融合蚁群算法与算法的二维空.docx 48.2KB
  3. 蚁群算法与其它算法在二维空.html 175.61KB
  4. 蚁群算法与其它算法在二维空间路径规划的应.docx 46.75KB
  5. 蚁群算法与算法在路径规划中的改进引言路.docx 46.56KB
  6. 蚁群算法在路径规划中的应用技术分析文章.html 175.79KB
  7. 蚁群算法在路径规划中的应用摘要.docx 24.04KB
  8. 蚁群算法改进蚁群算法算法遗传算法人工势.docx 14.31KB
  9. 蚁群算法改进蚁群算法算法遗传算法人工势.html 173.95KB
  10. 蚁群算法算法遗传算法与人工势场法在二维.docx 47.18KB
  11. 题目多维空间路径规划算法的探索与实践结合蚁群算法.docx 47.18KB

资源介绍:

改进蚁群算法与Dijkstra算法结合MAKLINK图理论实现二维空间最优路径规划,改进蚁群算法与Dijkstra算法结合MAKLINK图理论实现二维空间最优路径规划,【蚁群算法】 改进蚁群算法 Dijkstra算法 遗传算法 人工势场法实现二维 三维空间路径规划 本程序为蚁群算法+Dijkstra算法+MAKLINK图理论实现的二维空间路径规划 算法实现: 1)基于MAKLINK图理论生成地图,并对可行点进行划分; 2)用Dijkstra算法实现次优路径的寻找; 3)在Dijkstra算法的基础上加入了蚁群算法,调整了搜索策略,使路径更短 可调参数:算法迭代次数;起始点;目标点;障碍物位置;障碍物大小 仿真结果:地图上显示最优路径的对比 + 迭代曲线 + 输出行走距离 ,蚁群算法; 改进蚁群算法; Dijkstra算法; MAKLINK图理论; 路径规划; 空间路径规划(二维/三维); 算法迭代; 可调参数; 仿真结果。,基于多算法融合的二维三维空间路径规划系统

<link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/css/base.min.css" rel="stylesheet"/><link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/css/fancy.min.css" rel="stylesheet"/><link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/90430525/2/raw.css" rel="stylesheet"/><div id="sidebar" style="display: none"><div id="outline"></div></div><div class="pf w0 h0" data-page-no="1" id="pf1"><div class="pc pc1 w0 h0"><img alt="" class="bi x0 y0 w1 h1" src="/image.php?url=https://csdnimg.cn/release/download_crawler_static/90430525/bg1.jpg"/><div class="t m0 x1 h2 y1 ff1 fs0 fc0 sc0 ls0 ws0">文章标题:融合蚁群算法与<span class="_ _0"> </span><span class="ff2">Dijkstra<span class="_ _0"> </span></span>算法的二维空间路径规划策略</div><div class="t m0 x1 h2 y2 ff1 fs0 fc0 sc0 ls0 ws0">在现今的智能化技术发展中,<span class="_ _1"></span>路径规划问题一直是一个备受关注的焦点。<span class="_ _1"></span>随着计算机科学和</div><div class="t m0 x1 h2 y3 ff1 fs0 fc0 sc0 ls0 ws0">人工智能的不断发展,<span class="_ _1"></span>多种算法被应用于解决这一问题。<span class="_ _1"></span>本文将详细介绍一种融合了蚁群算</div><div class="t m0 x1 h2 y4 ff1 fs0 fc0 sc0 ls0 ws0">法与<span class="_ _0"> </span><span class="ff2">Dijkstra<span class="_ _0"> </span></span>算法,并辅以<span class="_ _0"> </span><span class="ff2">MAKLINK<span class="_ _0"> </span></span>图理论实现的二维空间路径规划程序。</div><div class="t m0 x1 h2 y5 ff1 fs0 fc0 sc0 ls0 ws0">一、蚁群算法与<span class="_ _0"> </span><span class="ff2">Dijkstra<span class="_ _0"> </span></span>算法简介</div><div class="t m0 x1 h2 y6 ff1 fs0 fc0 sc0 ls0 ws0">蚁群算法是一种模拟自然界中蚂蚁觅食行为的优化算法,<span class="_ _2"></span>其特点是通过模拟蚂蚁的信息素传</div><div class="t m0 x1 h2 y7 ff1 fs0 fc0 sc0 ls0 ws0">递过程,<span class="_ _3"></span>在寻优过程中不断调整搜索策略,<span class="_ _3"></span>以寻找最优路径。<span class="_ _3"></span>而<span class="_ _0"> </span><span class="ff2">Dijkstra<span class="_ _0"> </span></span>算法则是一种基于</div><div class="t m0 x1 h2 y8 ff1 fs0 fc0 sc0 ls0 ws0">图论的算法,用于在加权图中寻找最短路径。</div><div class="t m0 x1 h2 y9 ff1 fs0 fc0 sc0 ls0 ws0">二、融合蚁群算法与<span class="_ _0"> </span><span class="ff2">Dijkstra<span class="_ _0"> </span></span>算法的路径规划策略</div><div class="t m0 x1 h2 ya ff2 fs0 fc0 sc0 ls0 ws0">1. <span class="_ _4"> </span><span class="ff1">基于<span class="_ _0"> </span></span>MAKLINK<span class="_"> </span><span class="ff1">图理论生成地图,并对可行点进行划分</span></div><div class="t m0 x1 h2 yb ff2 fs0 fc0 sc0 ls0 ws0">MAKLINK<span class="_"> </span><span class="ff1">图理论是计算<span class="_ _5"></span>机图形学<span class="_ _5"></span>中的一<span class="_ _5"></span>种方法,<span class="_ _5"></span>它可以通<span class="_ _5"></span>过节点和<span class="_ _5"></span>边的关<span class="_ _5"></span>系来描述<span class="_ _5"></span>地图上</span></div><div class="t m0 x1 h2 yc ff1 fs0 fc0 sc0 ls0 ws0">的路径。在此程序中,首先根据<span class="_ _0"> </span><span class="ff2">MAKLINK<span class="_"> </span></span>图理论生成地图,并根据实际情况对可行点进行</div><div class="t m0 x1 h2 yd ff1 fs0 fc0 sc0 ls0 ws0">划分。</div><div class="t m0 x1 h2 ye ff2 fs0 fc0 sc0 ls0 ws0">2. <span class="_ _4"> </span><span class="ff1">用<span class="_ _0"> </span></span>Dijkstra<span class="_ _4"> </span><span class="ff1">算法实现次优路径的寻找</span></div><div class="t m0 x1 h2 yf ff1 fs0 fc0 sc0 ls0 ws0">在地<span class="_ _5"></span>图生<span class="_ _5"></span>成和<span class="_ _5"></span>可行<span class="_ _5"></span>点划<span class="_ _5"></span>分的<span class="_ _5"></span>基础<span class="_ _5"></span>上,<span class="_ _5"></span>程序<span class="_ _5"></span>使用<span class="_ _6"> </span><span class="ff2">Dijkstra<span class="_"> </span></span>算法来<span class="_ _5"></span>寻找<span class="_ _5"></span>次优<span class="_ _5"></span>路径<span class="_ _5"></span>。<span class="ff2">Dijkstra<span class="_"> </span></span>算<span class="_ _5"></span>法</div><div class="t m0 x1 h2 y10 ff1 fs0 fc0 sc0 ls0 ws0">可以有效地在加权图中找到最短路径,因此在路径规划中具有很高的应用价值。</div><div class="t m0 x1 h2 y11 ff2 fs0 fc0 sc0 ls0 ws0">3. <span class="_ _4"> </span><span class="ff1">在<span class="_ _0"> </span></span>Dijkstra<span class="_ _4"> </span><span class="ff1">算法的基础上加入蚁群算法</span></div><div class="t m0 x1 h2 y12 ff1 fs0 fc0 sc0 ls0 ws0">在<span class="_ _0"> </span><span class="ff2">Dijkstra<span class="_ _4"> </span></span>算法的基础上,我们加入了蚁群算法的思想。<span class="_ _3"></span>通过对搜索策略的调整,<span class="_ _3"></span>使程序能</div><div class="t m0 x1 h2 y13 ff1 fs0 fc0 sc0 ls0 ws0">够在寻优过程中更加灵活地选择路径,从而找到更短的路径。</div><div class="t m0 x1 h2 y14 ff1 fs0 fc0 sc0 ls0 ws0">三、可调参数与仿真结果</div><div class="t m0 x1 h2 y15 ff1 fs0 fc0 sc0 ls0 ws0">本程序具有多个可调参数,<span class="_ _7"></span>包括算法迭代次数、<span class="_ _7"></span>起始点、<span class="_ _7"></span>目标点、<span class="_ _7"></span>障碍物位置和障碍物大小</div><div class="t m0 x1 h2 y16 ff1 fs0 fc0 sc0 ls0 ws0">等。通过调整这些参数,可以灵活地适应不同的路径规划需求。</div><div class="t m0 x1 h2 y17 ff1 fs0 fc0 sc0 ls0 ws0">仿真结果主要包括地图上最优路径的对比、<span class="_ _1"></span>迭代曲线和行走距离的输出。<span class="_ _1"></span>通过对比不同参数</div><div class="t m0 x1 h2 y18 ff1 fs0 fc0 sc0 ls0 ws0">下的<span class="_ _5"></span>路径<span class="_ _5"></span>规划<span class="_ _5"></span>结果<span class="_ _5"></span>,可<span class="_ _5"></span>以直<span class="_ _5"></span>观地看<span class="_ _5"></span>出改<span class="_ _5"></span>进后<span class="_ _5"></span>的蚁<span class="_ _5"></span>群算<span class="_ _5"></span>法<span class="ff2">+Dijkstra<span class="_"> </span></span>算法<span class="_ _5"></span>在路<span class="_ _5"></span>径规<span class="_ _5"></span>划中<span class="_ _5"></span>的优<span class="_ _5"></span>越</div><div class="t m0 x1 h2 y19 ff1 fs0 fc0 sc0 ls0 ws0">性。</div><div class="t m0 x1 h2 y1a ff1 fs0 fc0 sc0 ls0 ws0">四、结论</div><div class="t m0 x1 h2 y1b ff1 fs0 fc0 sc0 ls0 ws0">本文<span class="_ _5"></span>介<span class="_ _5"></span>绍了<span class="_ _5"></span>一<span class="_ _5"></span>种融<span class="_ _5"></span>合<span class="_ _5"></span>蚁群<span class="_ _5"></span>算<span class="_ _5"></span>法与<span class="_ _6"> </span><span class="ff2">Dijkstra<span class="_"> </span></span>算法<span class="_ _5"></span>的二<span class="_ _5"></span>维<span class="_ _5"></span>空间<span class="_ _5"></span>路<span class="_ _5"></span>径规<span class="_ _5"></span>划<span class="_ _5"></span>策略<span class="_ _5"></span>。<span class="_ _5"></span>该策<span class="_ _5"></span>略<span class="_ _5"></span>通过<span class="_ _5"></span>引<span class="_ _5"></span>入</div><div class="t m0 x1 h2 y1c ff2 fs0 fc0 sc0 ls0 ws0">MAKLINK<span class="_"> </span><span class="ff1">图理论,<span class="_ _8"></span>实现了对地图的生成和可行点的划分。<span class="_ _8"></span>在此基础上,<span class="_ _7"></span>通过<span class="_ _4"> </span><span class="ff2">Dijkstra<span class="_"> </span></span>算法和</span></div><div class="t m0 x1 h2 y1d ff1 fs0 fc0 sc0 ls0 ws0">蚁群算法的结合,<span class="_ _7"></span>实现了次优路径的寻找和更短路径的优化。<span class="_ _7"></span>同时,<span class="_ _7"></span>通过调整可调参数,<span class="_ _7"></span>可</div></div><div class="pi" data-data='{"ctm":[1.611830,0.000000,0.000000,1.611830,0.000000,0.000000]}'></div></div>
100+评论
captcha