ZIPAOA算法优化随机森林RF树数与叶子节点的拟合预测建模:详细注释的Matlab程序,算数优化算法AOA改良随机森林RF建模:多输入单输出预测,详细注释的Matlab程序,可视化评估与指标打印 ,算数优 3.61MB

yQeSHzLQI

资源文件列表:

算数优化算法优化随机森林的树数和 大约有17个文件
  1. 1.jpg 240.07KB
  2. 2.jpg 214.32KB
  3. 3.jpg 130.39KB
  4. 4.jpg 103.55KB
  5. 5.jpg 184.14KB
  6. 6.jpg 271.11KB
  7. 7.jpg 158.43KB
  8. 以下是一篇程序代码和相关的注释用于建.docx 51.83KB
  9. 优化随机森林参数从理论到实践的探.docx 50.07KB
  10. 技术博客文章算数优化算法优化.html 1.72MB
  11. 标题基于算数优化算法的随机森林参数优化与建.docx 14.11KB
  12. 标题基于算数优化算法的随机森林参数调.docx 49.2KB
  13. 算数优化算法优化随机森林的.html 1.72MB
  14. 算数优化算法优化随机森林的技术博客文章在.docx 49.94KB
  15. 算数优化算法是一种用于解决优化问题的算法它通过调.docx 15.12KB
  16. 算数优化算法随机森林在数据拟合预测建模中.docx 49.23KB
  17. 算数优化算法随机森林模型在程序中的实践与应.docx 50.07KB

资源介绍:

AOA算法优化随机森林RF树数与叶子节点的拟合预测建模:详细注释的Matlab程序,算数优化算法AOA改良随机森林RF建模:多输入单输出预测,详细注释的Matlab程序,可视化评估与指标打印。,算数优化算法AOA优化随机森林RF的树数和最小叶子数,建立多输入单输出的拟合预测建模。 程序内注释详细,可学习性强,直接替数据可用。 程序语言为matlab。 直接运行可以出拟合预测图,优化迭代图,特征变量重要性排序图,可以打印R方,MSE,RMSE,MAPE等多种评价指标,便于分析。 ,算数优化算法AOA; 随机森林RF; 树数和最小叶子数优化; 拟合预测建模; 程序内注释详细; 直接运行出图; 评价指标,基于AOA算法优化的随机森林模型:多图可视化与性能评估系统
<link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/css/base.min.css" rel="stylesheet"/><link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/css/fancy.min.css" rel="stylesheet"/><link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/90427205/2/raw.css" rel="stylesheet"/><div id="sidebar" style="display: none"><div id="outline"></div></div><div class="pf w0 h0" data-page-no="1" id="pf1"><div class="pc pc1 w0 h0"><img alt="" class="bi x0 y0 w1 h1" src="/image.php?url=https://csdnimg.cn/release/download_crawler_static/90427205/bg1.jpg"/><div class="t m0 x1 h2 y1 ff1 fs0 fc0 sc0 ls0 ws0">以下是一篇<span class="_ _0"> </span><span class="ff2">Matlab<span class="_"> </span></span>程序代码和相关的注释,用于建立多输入单输出的拟合预<span class="_ _1"></span>测模型,同时</div><div class="t m0 x1 h2 y2 ff1 fs0 fc0 sc0 ls0 ws0">使用<span class="_ _1"></span>了算<span class="_ _1"></span>数优<span class="_ _1"></span>化算<span class="_ _1"></span>法(<span class="_ _1"></span><span class="ff2">AOA</span>)<span class="_ _1"></span>来优<span class="_ _1"></span>化随<span class="_ _1"></span>机<span class="_ _1"></span>森林<span class="_ _1"></span>(<span class="ff2">RF<span class="_ _1"></span></span>)的<span class="_ _1"></span>树数<span class="_ _1"></span>和最<span class="_ _1"></span>小叶<span class="_ _1"></span>子数<span class="_ _1"></span>。程<span class="_ _1"></span>序包<span class="_ _1"></span>括<span class="_ _1"></span>拟合</div><div class="t m0 x1 h2 y3 ff1 fs0 fc0 sc0 ls0 ws0">预测图、<span class="_ _2"></span>优化迭代图、<span class="_ _2"></span>特征变量重要性排序图,<span class="_ _2"></span>并打印了<span class="_ _0"> </span><span class="ff2">R<span class="_ _0"> </span></span>方、<span class="_ _2"></span><span class="ff2">MSE<span class="ff1">、<span class="_ _2"></span><span class="ff2">RMSE<span class="_ _3"> </span><span class="ff1">和<span class="_ _3"> </span></span>MAPE<span class="_"> </span><span class="ff1">等多</span></span></span></span></div><div class="t m0 x1 h2 y4 ff1 fs0 fc0 sc0 ls0 ws0">种评价指标。</div><div class="t m0 x1 h2 y5 ff2 fs0 fc0 sc0 ls0 ws0">```matlab</div><div class="t m0 x1 h2 y6 ff2 fs0 fc0 sc0 ls0 ws0">% <span class="_ _3"> </span><span class="ff1">导入数据</span></div><div class="t m0 x1 h2 y7 ff2 fs0 fc0 sc0 ls0 ws0">% <span class="_ _3"> </span><span class="ff1">假设你的数据集已经准备好,并且已经加载到变量<span class="_ _3"> </span></span>data<span class="_"> </span><span class="ff1">中</span></div><div class="t m0 x1 h2 y8 ff2 fs0 fc0 sc0 ls0 ws0">% data = load('your_data_file.csv'); % <span class="_ _3"> </span><span class="ff1">示例加载数据,请根据实际情况替换</span></div><div class="t m0 x1 h2 y9 ff2 fs0 fc0 sc0 ls0 ws0">% <span class="_ _3"> </span><span class="ff1">划分训练集和测试集</span></div><div class="t m0 x1 h2 ya ff2 fs0 fc0 sc0 ls0 ws0">cvp = cvpartition(data.response, 'Holdout', 0.2); % <span class="_ _3"> </span><span class="ff1">划分<span class="_ _3"> </span></span>80%<span class="ff1">的数据为训练集,</span>20%<span class="ff1">为测试集</span></div><div class="t m0 x1 h2 yb ff2 fs0 fc0 sc0 ls0 ws0">trainData = data(training(cvp), :); % <span class="_ _3"> </span><span class="ff1">训练集数据</span></div><div class="t m0 x1 h2 yc ff2 fs0 fc0 sc0 ls0 ws0">testData = data(test(cvp), :); % <span class="_ _3"> </span><span class="ff1">测试集数据</span></div><div class="t m0 x1 h2 yd ff2 fs0 fc0 sc0 ls0 ws0">% <span class="_ _3"> </span><span class="ff1">定义随机森林模型参数</span></div><div class="t m0 x1 h2 ye ff2 fs0 fc0 sc0 ls0 ws0">numTrees = 100; % <span class="_ _3"> </span><span class="ff1">树的数量</span></div><div class="t m0 x1 h2 yf ff2 fs0 fc0 sc0 ls0 ws0">minLeafSize = 5; % <span class="_ _3"> </span><span class="ff1">最小叶子节点数</span></div><div class="t m0 x1 h2 y10 ff2 fs0 fc0 sc0 ls0 ws0">% <span class="_ _3"> </span><span class="ff1">使用<span class="_ _3"> </span></span>AOA<span class="_"> </span><span class="ff1">算法优化参数</span></div><div class="t m0 x1 h2 y11 ff2 fs0 fc0 sc0 ls0 ws0">function optimizedParams = AOA_optimizeRF(trainData, numTrees, minLeafSize)</div><div class="t m0 x1 h2 y12 ff2 fs0 fc0 sc0 ls0 ws0"> <span class="_ _4"> </span>% <span class="_ _3"> </span><span class="ff1">初始化<span class="_ _3"> </span></span>AOA<span class="_"> </span><span class="ff1">参数(这需要根据具体情况设置,此处只是示例)</span></div><div class="t m0 x1 h2 y13 ff2 fs0 fc0 sc0 ls0 ws0"> <span class="_ _4"> </span>initialParams = [numTrees, minLeafSize];</div><div class="t m0 x1 h2 y14 ff2 fs0 fc0 sc0 ls0 ws0"> <span class="_ _4"> </span>...</div><div class="t m0 x1 h2 y15 ff2 fs0 fc0 sc0 ls0 ws0"> <span class="_ _4"> </span>% <span class="_ _3"> </span><span class="ff1">这里编写<span class="_ _3"> </span></span>AOA<span class="_"> </span><span class="ff1">算法的核心部分,以寻找最优的树数和最小叶子数组合</span></div><div class="t m0 x1 h2 y16 ff2 fs0 fc0 sc0 ls0 ws0"> <span class="_ _4"> </span>...</div><div class="t m0 x1 h2 y17 ff2 fs0 fc0 sc0 ls0 ws0"> <span class="_ _4"> </span>return optimizedParams; % <span class="_ _3"> </span><span class="ff1">返回最优的树数和最小叶子数组合</span></div><div class="t m0 x1 h2 y18 ff2 fs0 fc0 sc0 ls0 ws0">end</div><div class="t m0 x1 h2 y19 ff2 fs0 fc0 sc0 ls0 ws0">% <span class="_ _3"> </span><span class="ff1">调用<span class="_ _3"> </span></span>AOA<span class="_"> </span><span class="ff1">算法优化随机森林参数</span></div><div class="t m0 x1 h2 y1a ff2 fs0 fc0 sc0 ls0 ws0">[optimizedNumTrees, <span class="_ _5"> </span>optimizedMinLeafSize] <span class="_ _5"> </span>= <span class="_ _5"> </span>AOA_optimizeRF(trainData, <span class="_ _5"> </span>numTrees, </div><div class="t m0 x1 h2 y1b ff2 fs0 fc0 sc0 ls0 ws0">minLeafSize);</div><div class="t m0 x1 h2 y1c ff2 fs0 fc0 sc0 ls0 ws0">% <span class="_ _3"> </span><span class="ff1">建立随机森林模型并训练</span></div><div class="t m0 x1 h2 y1d ff2 fs0 fc0 sc0 ls0 ws0">rfModel <span class="_ _6"> </span>= <span class="_ _6"> </span>fitensemble(trainData.X, <span class="_ _6"> </span>trainData.Y, <span class="_ _6"> </span>'TreeBagger', <span class="_ _6"> </span>'NumTrees', </div><div class="t m0 x1 h2 y1e ff2 fs0 fc0 sc0 ls0 ws0">optimizedNumTrees, 'MinLeafSize', optimizedMinLeafSize);</div><div class="t m0 x1 h2 y1f ff2 fs0 fc0 sc0 ls0 ws0">% <span class="_ _3"> </span><span class="ff1">拟合预测建模及评价指标计算</span></div><div class="t m0 x1 h2 y20 ff2 fs0 fc0 sc0 ls0 ws0">predictions = predict(rfModel, testData.X); % <span class="_ _3"> </span><span class="ff1">对测试集进行预测</span></div><div class="t m0 x1 h2 y21 ff2 fs0 fc0 sc0 ls0 ws0">R2 = r2(testData.Y, predictions); % R<span class="_ _3"> </span><span class="ff1">方计算</span></div><div class="t m0 x1 h2 y22 ff2 fs0 fc0 sc0 ls0 ws0">MSE = mean((testData.Y - predictions).^2); % <span class="_ _3"> </span><span class="ff1">均方误差<span class="_ _3"> </span></span>MSE<span class="_"> </span><span class="ff1">计算</span></div><div class="t m0 x1 h2 y23 ff2 fs0 fc0 sc0 ls0 ws0">RMSE = sqrt(MSE); % <span class="_ _3"> </span><span class="ff1">均方根误差<span class="_ _3"> </span></span>RMSE<span class="_"> </span><span class="ff1">计算</span></div><div class="t m0 x1 h2 y24 ff2 fs0 fc0 sc0 ls0 ws0">MAPE <span class="_ _7"></span>= <span class="_ _7"></span>mean(abs((testData.Y <span class="_ _7"></span>- <span class="_ _7"></span>predictions) <span class="_ _7"></span>./ <span class="_ _7"></span>testData.Y) <span class="_ _7"></span>* <span class="_ _7"></span>100); <span class="_ _7"></span>% <span class="_"> </span><span class="ff1">平<span class="_ _7"></span>均<span class="_ _7"></span>绝<span class="_ _7"></span>对<span class="_ _7"></span>百<span class="_ _7"></span>分<span class="_ _7"></span>比<span class="_ _7"></span>误<span class="_ _7"></span>差</span></div><div class="t m0 x1 h2 y25 ff2 fs0 fc0 sc0 ls0 ws0">MAPE<span class="_ _3"> </span><span class="ff1">计算</span></div></div><div class="pi" data-data='{"ctm":[1.611830,0.000000,0.000000,1.611830,0.000000,0.000000]}'></div></div>
100+评论
captcha
    类型标题大小时间
    ZIP错位时空:无环流可逆调速系统的数字化仿真模型研究,《高效稳定:错位无环流可逆调速系统仿真模型的应用与发展趋势研究》,错位无环流可逆调速系统仿真模型,错位; 无环流; 可逆调速系统; 仿真模型;,仿真4.24MB1月前
    ZIPTeststand平台开发实践:从源码出发的深入解析与应用案例,Teststand平台源码级开发:技术揭秘与实操指南,Teststand平台开发,带源码,Teststand平台; 开发; 带源码; 6.09MB1月前
    ZIPPMSM永磁同步电机参数辨识仿真研究:定子电阻、DQ电感与转子磁链辨识算法实践,PMSM永磁同步电机参数辨识仿真研究:定子电阻、DQ电感与转子磁链辨识算法详解,PMSM永磁同步电机参数辨识仿真,适用于13MB1月前
    ZIP某米扫地机器人大厂STM32源码解析:清晰注释、规范编码,实现延边避障、防跌落及充电等功能,适合工程师学习参考,某米扫地机源码分享:STM32端延边避障防跌落充电功能实现,明晰代码注释与规范,含陀螺13.66MB1月前
    ZIP直接生产型闭环步进驱动器源码:已量产,附带PCB文件、BOM及工程文件,上位机软件一应俱全,直接生产,高效驱动:闭环步进驱动器源码及全套生产资料,含PCB文件、BOM及工程文件,上位机软件一应俱全,闭794.83KB1月前
    ZIP表贴电机与内插电机适用的永磁同步电机无位置观测算法:电流模型与PLL技术实现带载闭环启动,表贴电机与内插电机的通用永磁同步电机无位置观测算法研究:电流模型与PLL应用及代码实现,一种永磁同步电机无位置1.24MB1月前
    ZIPQT MD5校验文件和数据的完整性19.8MB1月前
    ZIP自适应变步长的龙格库塔法_matlab693.12KB1月前