算数优化算法优化随机森林的树数和
大小:3.61MB
价格:36积分
下载量:0
评分:
5.0
上传者:yQeSHzLQI
更新日期:2025-09-22

AOA算法优化随机森林RF树数与叶子节点的拟合预测建模:详细注释的Matlab程序,算数优化算法AOA改良随机森林RF建模:多输入单输出预测,详细注释的Matlab程序,可视化评估与指标打印 ,算数优

资源文件列表(大概)

文件名
大小
1.jpg
240.07KB
2.jpg
214.32KB
3.jpg
130.39KB
4.jpg
103.55KB
5.jpg
184.14KB
6.jpg
271.11KB
7.jpg
158.43KB
以下是一篇程序代码和相关的注释用于建.docx
51.83KB
优化随机森林参数从理论到实践的探.docx
50.07KB
技术博客文章算数优化算法优化.html
1.72MB
标题基于算数优化算法的随机森林参数优化与建.docx
14.11KB
标题基于算数优化算法的随机森林参数调.docx
49.2KB
算数优化算法优化随机森林的.html
1.72MB
算数优化算法优化随机森林的技术博客文章在.docx
49.94KB
算数优化算法是一种用于解决优化问题的算法它通过调.docx
15.12KB
算数优化算法随机森林在数据拟合预测建模中.docx
49.23KB
算数优化算法随机森林模型在程序中的实践与应.docx
50.07KB

资源内容介绍

AOA算法优化随机森林RF树数与叶子节点的拟合预测建模:详细注释的Matlab程序,算数优化算法AOA改良随机森林RF建模:多输入单输出预测,详细注释的Matlab程序,可视化评估与指标打印。,算数优化算法AOA优化随机森林RF的树数和最小叶子数,建立多输入单输出的拟合预测建模。程序内注释详细,可学习性强,直接替数据可用。程序语言为matlab。直接运行可以出拟合预测图,优化迭代图,特征变量重要性排序图,可以打印R方,MSE,RMSE,MAPE等多种评价指标,便于分析。,算数优化算法AOA; 随机森林RF; 树数和最小叶子数优化; 拟合预测建模; 程序内注释详细; 直接运行出图; 评价指标,基于AOA算法优化的随机森林模型:多图可视化与性能评估系统
<link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/css/base.min.css" rel="stylesheet"/><link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/css/fancy.min.css" rel="stylesheet"/><link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/90427205/2/raw.css" rel="stylesheet"/><div id="sidebar" style="display: none"><div id="outline"></div></div><div class="pf w0 h0" data-page-no="1" id="pf1"><div class="pc pc1 w0 h0"><img alt="" class="bi x0 y0 w1 h1" src="/image.php?url=https://csdnimg.cn/release/download_crawler_static/90427205/bg1.jpg"/><div class="t m0 x1 h2 y1 ff1 fs0 fc0 sc0 ls0 ws0">以下是一篇<span class="_ _0"> </span><span class="ff2">Matlab<span class="_"> </span></span>程序代码和相关的注释,用于建立多输入单输出的拟合预<span class="_ _1"></span>测模型,同时</div><div class="t m0 x1 h2 y2 ff1 fs0 fc0 sc0 ls0 ws0">使用<span class="_ _1"></span>了算<span class="_ _1"></span>数优<span class="_ _1"></span>化算<span class="_ _1"></span>法(<span class="_ _1"></span><span class="ff2">AOA</span>)<span class="_ _1"></span>来优<span class="_ _1"></span>化随<span class="_ _1"></span>机<span class="_ _1"></span>森林<span class="_ _1"></span>(<span class="ff2">RF<span class="_ _1"></span></span>)的<span class="_ _1"></span>树数<span class="_ _1"></span>和最<span class="_ _1"></span>小叶<span class="_ _1"></span>子数<span class="_ _1"></span>。程<span class="_ _1"></span>序包<span class="_ _1"></span>括<span class="_ _1"></span>拟合</div><div class="t m0 x1 h2 y3 ff1 fs0 fc0 sc0 ls0 ws0">预测图、<span class="_ _2"></span>优化迭代图、<span class="_ _2"></span>特征变量重要性排序图,<span class="_ _2"></span>并打印了<span class="_ _0"> </span><span class="ff2">R<span class="_ _0"> </span></span>方、<span class="_ _2"></span><span class="ff2">MSE<span class="ff1">、<span class="_ _2"></span><span class="ff2">RMSE<span class="_ _3"> </span><span class="ff1">和<span class="_ _3"> </span></span>MAPE<span class="_"> </span><span class="ff1">等多</span></span></span></span></div><div class="t m0 x1 h2 y4 ff1 fs0 fc0 sc0 ls0 ws0">种评价指标。</div><div class="t m0 x1 h2 y5 ff2 fs0 fc0 sc0 ls0 ws0">```matlab</div><div class="t m0 x1 h2 y6 ff2 fs0 fc0 sc0 ls0 ws0">% <span class="_ _3"> </span><span class="ff1">导入数据</span></div><div class="t m0 x1 h2 y7 ff2 fs0 fc0 sc0 ls0 ws0">% <span class="_ _3"> </span><span class="ff1">假设你的数据集已经准备好,并且已经加载到变量<span class="_ _3"> </span></span>data<span class="_"> </span><span class="ff1">中</span></div><div class="t m0 x1 h2 y8 ff2 fs0 fc0 sc0 ls0 ws0">% data = load('your_data_file.csv'); % <span class="_ _3"> </span><span class="ff1">示例加载数据,请根据实际情况替换</span></div><div class="t m0 x1 h2 y9 ff2 fs0 fc0 sc0 ls0 ws0">% <span class="_ _3"> </span><span class="ff1">划分训练集和测试集</span></div><div class="t m0 x1 h2 ya ff2 fs0 fc0 sc0 ls0 ws0">cvp = cvpartition(data.response, 'Holdout', 0.2); % <span class="_ _3"> </span><span class="ff1">划分<span class="_ _3"> </span></span>80%<span class="ff1">的数据为训练集,</span>20%<span class="ff1">为测试集</span></div><div class="t m0 x1 h2 yb ff2 fs0 fc0 sc0 ls0 ws0">trainData = data(training(cvp), :); % <span class="_ _3"> </span><span class="ff1">训练集数据</span></div><div class="t m0 x1 h2 yc ff2 fs0 fc0 sc0 ls0 ws0">testData = data(test(cvp), :); % <span class="_ _3"> </span><span class="ff1">测试集数据</span></div><div class="t m0 x1 h2 yd ff2 fs0 fc0 sc0 ls0 ws0">% <span class="_ _3"> </span><span class="ff1">定义随机森林模型参数</span></div><div class="t m0 x1 h2 ye ff2 fs0 fc0 sc0 ls0 ws0">numTrees = 100; % <span class="_ _3"> </span><span class="ff1">树的数量</span></div><div class="t m0 x1 h2 yf ff2 fs0 fc0 sc0 ls0 ws0">minLeafSize = 5; % <span class="_ _3"> </span><span class="ff1">最小叶子节点数</span></div><div class="t m0 x1 h2 y10 ff2 fs0 fc0 sc0 ls0 ws0">% <span class="_ _3"> </span><span class="ff1">使用<span class="_ _3"> </span></span>AOA<span class="_"> </span><span class="ff1">算法优化参数</span></div><div class="t m0 x1 h2 y11 ff2 fs0 fc0 sc0 ls0 ws0">function optimizedParams = AOA_optimizeRF(trainData, numTrees, minLeafSize)</div><div class="t m0 x1 h2 y12 ff2 fs0 fc0 sc0 ls0 ws0"> <span class="_ _4"> </span>% <span class="_ _3"> </span><span class="ff1">初始化<span class="_ _3"> </span></span>AOA<span class="_"> </span><span class="ff1">参数(这需要根据具体情况设置,此处只是示例)</span></div><div class="t m0 x1 h2 y13 ff2 fs0 fc0 sc0 ls0 ws0"> <span class="_ _4"> </span>initialParams = [numTrees, minLeafSize];</div><div class="t m0 x1 h2 y14 ff2 fs0 fc0 sc0 ls0 ws0"> <span class="_ _4"> </span>...</div><div class="t m0 x1 h2 y15 ff2 fs0 fc0 sc0 ls0 ws0"> <span class="_ _4"> </span>% <span class="_ _3"> </span><span class="ff1">这里编写<span class="_ _3"> </span></span>AOA<span class="_"> </span><span class="ff1">算法的核心部分,以寻找最优的树数和最小叶子数组合</span></div><div class="t m0 x1 h2 y16 ff2 fs0 fc0 sc0 ls0 ws0"> <span class="_ _4"> </span>...</div><div class="t m0 x1 h2 y17 ff2 fs0 fc0 sc0 ls0 ws0"> <span class="_ _4"> </span>return optimizedParams; % <span class="_ _3"> </span><span class="ff1">返回最优的树数和最小叶子数组合</span></div><div class="t m0 x1 h2 y18 ff2 fs0 fc0 sc0 ls0 ws0">end</div><div class="t m0 x1 h2 y19 ff2 fs0 fc0 sc0 ls0 ws0">% <span class="_ _3"> </span><span class="ff1">调用<span class="_ _3"> </span></span>AOA<span class="_"> </span><span class="ff1">算法优化随机森林参数</span></div><div class="t m0 x1 h2 y1a ff2 fs0 fc0 sc0 ls0 ws0">[optimizedNumTrees, <span class="_ _5"> </span>optimizedMinLeafSize] <span class="_ _5"> </span>= <span class="_ _5"> </span>AOA_optimizeRF(trainData, <span class="_ _5"> </span>numTrees, </div><div class="t m0 x1 h2 y1b ff2 fs0 fc0 sc0 ls0 ws0">minLeafSize);</div><div class="t m0 x1 h2 y1c ff2 fs0 fc0 sc0 ls0 ws0">% <span class="_ _3"> </span><span class="ff1">建立随机森林模型并训练</span></div><div class="t m0 x1 h2 y1d ff2 fs0 fc0 sc0 ls0 ws0">rfModel <span class="_ _6"> </span>= <span class="_ _6"> </span>fitensemble(trainData.X, <span class="_ _6"> </span>trainData.Y, <span class="_ _6"> </span>'TreeBagger', <span class="_ _6"> </span>'NumTrees', </div><div class="t m0 x1 h2 y1e ff2 fs0 fc0 sc0 ls0 ws0">optimizedNumTrees, 'MinLeafSize', optimizedMinLeafSize);</div><div class="t m0 x1 h2 y1f ff2 fs0 fc0 sc0 ls0 ws0">% <span class="_ _3"> </span><span class="ff1">拟合预测建模及评价指标计算</span></div><div class="t m0 x1 h2 y20 ff2 fs0 fc0 sc0 ls0 ws0">predictions = predict(rfModel, testData.X); % <span class="_ _3"> </span><span class="ff1">对测试集进行预测</span></div><div class="t m0 x1 h2 y21 ff2 fs0 fc0 sc0 ls0 ws0">R2 = r2(testData.Y, predictions); % R<span class="_ _3"> </span><span class="ff1">方计算</span></div><div class="t m0 x1 h2 y22 ff2 fs0 fc0 sc0 ls0 ws0">MSE = mean((testData.Y - predictions).^2); % <span class="_ _3"> </span><span class="ff1">均方误差<span class="_ _3"> </span></span>MSE<span class="_"> </span><span class="ff1">计算</span></div><div class="t m0 x1 h2 y23 ff2 fs0 fc0 sc0 ls0 ws0">RMSE = sqrt(MSE); % <span class="_ _3"> </span><span class="ff1">均方根误差<span class="_ _3"> </span></span>RMSE<span class="_"> </span><span class="ff1">计算</span></div><div class="t m0 x1 h2 y24 ff2 fs0 fc0 sc0 ls0 ws0">MAPE <span class="_ _7"></span>= <span class="_ _7"></span>mean(abs((testData.Y <span class="_ _7"></span>- <span class="_ _7"></span>predictions) <span class="_ _7"></span>./ <span class="_ _7"></span>testData.Y) <span class="_ _7"></span>* <span class="_ _7"></span>100); <span class="_ _7"></span>% <span class="_"> </span><span class="ff1">平<span class="_ _7"></span>均<span class="_ _7"></span>绝<span class="_ _7"></span>对<span class="_ _7"></span>百<span class="_ _7"></span>分<span class="_ _7"></span>比<span class="_ _7"></span>误<span class="_ _7"></span>差</span></div><div class="t m0 x1 h2 y25 ff2 fs0 fc0 sc0 ls0 ws0">MAPE<span class="_ _3"> </span><span class="ff1">计算</span></div></div><div class="pi" data-data='{"ctm":[1.611830,0.000000,0.000000,1.611830,0.000000,0.000000]}'></div></div>

用户评论 (0)

发表评论

captcha

相关资源

错位时空:无环流可逆调速系统的数字化仿真模型研究,《高效稳定:错位无环流可逆调速系统仿真模型的应用与发展趋势研究》,错位无环流可逆调速系统仿真模型,错位; 无环流; 可逆调速系统; 仿真模型;,仿真

错位时空:无环流可逆调速系统的数字化仿真模型研究,《高效稳定:错位无环流可逆调速系统仿真模型的应用与发展趋势研究》,错位无环流可逆调速系统仿真模型,错位; 无环流; 可逆调速系统; 仿真模型;,仿真模型:错位无环流可逆调速系统

4.24MB26积分

Teststand平台开发实践:从源码出发的深入解析与应用案例,Teststand平台源码级开发:技术揭秘与实操指南,Teststand平台开发,带源码,Teststand平台; 开发; 带源码;

Teststand平台开发实践:从源码出发的深入解析与应用案例,Teststand平台源码级开发:技术揭秘与实操指南,Teststand平台开发,带源码,Teststand平台; 开发; 带源码; 程序开发; 代码管理,Teststand平台开发揭秘:源码驱动的创新实践

6.09MB28积分

PMSM永磁同步电机参数辨识仿真研究:定子电阻、DQ电感与转子磁链辨识算法实践,PMSM永磁同步电机参数辨识仿真研究:定子电阻、DQ电感与转子磁链辨识算法详解,PMSM永磁同步电机参数辨识仿真,适用于

PMSM永磁同步电机参数辨识仿真研究:定子电阻、DQ电感与转子磁链辨识算法实践,PMSM永磁同步电机参数辨识仿真研究:定子电阻、DQ电感与转子磁链辨识算法详解,PMSM永磁同步电机参数辨识仿真,适用于表贴式,内嵌式永磁同步电机:辨识内容:① 定子电阻;② DQ电感辨识(脉冲电压法);③ 转子磁链辨识;上述算法,是在实践工程中提炼出的算法,无复杂的矩阵计算,无复杂的滤波算法。带文档说明 ,PMSM永磁同步电机;定子电阻辨识;DQ电感辨识(脉冲电压法);转子磁链辨识;实践工程算法;无复杂计算;带文档说明,PMSM永磁同步电机简易参数辨识仿真:定子电阻、DQ电感及转子磁链的工程算法解析

13MB49积分

某米扫地机器人大厂STM32源码解析:清晰注释、规范编码,实现延边避障、防跌落及充电等功能,适合工程师学习参考,某米扫地机源码分享:STM32端延边避障防跌落充电功能实现,明晰代码注释与规范,含陀螺

某米扫地机器人大厂STM32源码解析:清晰注释、规范编码,实现延边避障、防跌落及充电等功能,适合工程师学习参考,“某米扫地机源码分享:STM32端延边避障防跌落充电功能实现,明晰代码注释与规范,含陀螺仪等多驱动技术”,某米扫地机。大厂程序源码。STM32端代码能实现延边避障防跌 落充电等功能适合需要学习项目与代码规范的工程师硬件驱动包含 陀螺仪姿态传感器bmi160、电源管理bq24733等。软件驱动包括 IIC、PWM、SPI、多路ADC与DMA、编码器输入捕获、外部中断、通信协议、IAP升级、PID、freertos操作系统等。代码注释清晰、代码规范好、每个函数必有输入输出范围参数解释。,关键词:某米扫地机; 大厂程序源码; STM32端代码; 延边避障防跌落; 充电功能; 硬件驱动; 陀螺仪姿态传感器; 电源管理; 软件驱动; IIC; PWM; SPI; 多路ADC与DMA; 编码器输入捕获; 外部中断; 通信协议; IAP升级; PID控制; freertos操作系统; 代码注释清晰; 代码规范。,米家扫地机技术详解:大厂代码实现高级功能

13.66MB15积分