基于改进的鲸鱼优化算法GSWOA的Elman参数优化及多输入单输出拟合预测模型建立-Matlab实现,基于改进的鲸鱼优化算法的Elman参数优化和多输入单输出拟合预测模型(MATLAB实现),基于改

DFPNwcfGcvZIP基于改进的鲸鱼优化算法对的参数进行  2.25MB

资源文件列表:

ZIP 基于改进的鲸鱼优化算法对的参数进行 大约有15个文件
  1. 1.jpg 204.55KB
  2. 2.jpg 187.34KB
  3. 3.jpg 158.97KB
  4. 4.jpg 112.84KB
  5. 5.jpg 83.39KB
  6. 基于改进的鲸鱼优化算法对的参数进行优.docx 16KB
  7. 基于改进的鲸鱼优化算法对的参数进行优化可以建立多.docx 17.2KB
  8. 基于改进的鲸鱼优化算法对的参数进行优化建立多输入.html 1MB
  9. 基于改进的鲸鱼优化算法对神经网络的参数优化及.docx 53.08KB
  10. 基于改进鲸鱼优化.html 1MB
  11. 基于改进鲸鱼优化算法对模型的参数优化一引言在当.docx 52.05KB
  12. 基于改进鲸鱼优化算法对神经网络参.docx 51.09KB
  13. 基于改进鲸鱼优化算法对网络参数进行优化建立拟合.docx 51.09KB
  14. 标题基于改进的鲸鱼优化算法对的参数进行优化建立.docx 50.71KB
  15. 题目鲸鱼之声改进算法优化神经网络参.docx 52.05KB

资源介绍:

基于改进的鲸鱼优化算法GSWOA的Elman参数优化及多输入单输出拟合预测模型建立——Matlab实现,基于改进的鲸鱼优化算法的Elman参数优化和多输入单输出拟合预测模型(MATLAB实现),基于改进的鲸鱼优化算法GSWOA对Elman的参数进行优化,建立多输入单输出的拟合预测模型。 程序内注释详细直接替数据可用。 程序语言为matlab。 ,GSWOA优化算法; Elman参数优化; 多输入单输出预测模型; MATLAB程序; 程序内注释详细,MATLAB中的GSWOA算法优化Elman网络参数——多输入单输出预测模型

<link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/css/base.min.css" rel="stylesheet"/><link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/css/fancy.min.css" rel="stylesheet"/><link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/90425802/2/raw.css" rel="stylesheet"/><div id="sidebar" style="display: none"><div id="outline"></div></div><div class="pf w0 h0" data-page-no="1" id="pf1"><div class="pc pc1 w0 h0"><img alt="" class="bi x0 y0 w1 h1" src="/image.php?url=https://csdnimg.cn/release/download_crawler_static/90425802/bg1.jpg"/><div class="t m0 x1 h2 y1 ff1 fs0 fc0 sc0 ls0 ws0">基于<span class="_ _0"></span>改进<span class="_ _0"></span>的鲸<span class="_ _0"></span>鱼优<span class="_ _0"></span>化算<span class="_ _0"></span>法<span class="_ _1"> </span><span class="ff2">GSWOA<span class="_"> </span></span>对<span class="_ _1"> </span><span class="ff2">Elman<span class="_ _1"> </span></span>神经网<span class="_ _0"></span>络的<span class="_ _0"></span>参数<span class="_ _0"></span>优化<span class="_ _0"></span>及多<span class="_ _0"></span>输入<span class="_ _0"></span>单输<span class="_ _0"></span>出拟<span class="_ _0"></span>合预<span class="_ _0"></span>测</div><div class="t m0 x1 h2 y2 ff1 fs0 fc0 sc0 ls0 ws0">模型</div><div class="t m0 x1 h2 y3 ff2 fs0 fc0 sc0 ls0 ws0">```matlab</div><div class="t m0 x1 h2 y4 ff2 fs0 fc0 sc0 ls0 ws0">% <span class="_ _2"> </span><span class="ff1">基于改进的鲸鱼优化算法<span class="_ _1"> </span></span>GSWOA<span class="_ _2"> </span><span class="ff1">对<span class="_ _1"> </span></span>Elman<span class="_ _2"> </span><span class="ff1">神经网络进行参数优化</span></div><div class="t m0 x1 h2 y5 ff2 fs0 fc0 sc0 ls0 ws0">% <span class="_ _2"> </span><span class="ff1">导入或准备数据</span></div><div class="t m0 x1 h2 y6 ff2 fs0 fc0 sc0 ls0 ws0">% <span class="_ _2"> </span><span class="ff1">假设我们有一组多输入单输出的数据集,</span>data<span class="_ _1"> </span><span class="ff1">中包含输入和输出</span></div><div class="t m0 x1 h2 y7 ff2 fs0 fc0 sc0 ls0 ws0">% data = [input_data; output_data];</div><div class="t m0 x1 h2 y8 ff2 fs0 fc0 sc0 ls0 ws0">% <span class="_ _2"> </span><span class="ff1">初始化<span class="_ _1"> </span></span>Elman<span class="_ _2"> </span><span class="ff1">神经网络参数</span></div><div class="t m0 x1 h2 y9 ff2 fs0 fc0 sc0 ls0 ws0">% <span class="_ _2"> </span><span class="ff1">初始化网络结构,如隐藏层神经元数量等</span></div><div class="t m0 x1 h2 ya ff2 fs0 fc0 sc0 ls0 ws0">hiddenLayerSize = 10; % <span class="_ _2"> </span><span class="ff1">隐藏层神经元数量</span></div><div class="t m0 x1 h2 yb ff2 fs0 fc0 sc0 ls0 ws0">% <span class="_ _2"> </span><span class="ff1">初始化<span class="_ _1"> </span></span>Elman<span class="_ _2"> </span><span class="ff1">网络,并随机设置初始权重和偏置</span></div><div class="t m0 x1 h2 yc ff2 fs0 fc0 sc0 ls0 ws0">elmanNet = fitnet(hiddenLayerSize);</div><div class="t m0 x1 h2 yd ff2 fs0 fc0 sc0 ls0 ws0">elmanNet.divideParam.trainRatio = 0.7; % <span class="_ _2"> </span><span class="ff1">训练集比例</span></div><div class="t m0 x1 h2 ye ff2 fs0 fc0 sc0 ls0 ws0">elmanNet.divideParam.valRatio = 0.15; <span class="_ _3"> </span>% <span class="_ _2"> </span><span class="ff1">验证集比例</span></div><div class="t m0 x1 h2 yf ff2 fs0 fc0 sc0 ls0 ws0">elmanNet.divideParam.testRatio = 0.15; % <span class="_ _2"> </span><span class="ff1">测试集比例</span></div><div class="t m0 x1 h2 y10 ff2 fs0 fc0 sc0 ls0 ws0">% <span class="_ _2"> </span><span class="ff1">基于改进的鲸鱼优化算法<span class="_ _1"> </span></span>GSWOA<span class="_ _2"> </span><span class="ff1">进行参数优化</span></div><div class="t m0 x1 h2 y11 ff2 fs0 fc0 sc0 ls0 ws0">% <span class="_ _2"> </span><span class="ff1">定义目标函数,这里我们以网络的训练误差作为优化目标</span></div><div class="t m0 x1 h2 y12 ff2 fs0 fc0 sc0 ls0 ws0">% functionValue = @(params)trainError(elmanNet,params,data);</div><div class="t m0 x1 h2 y13 ff2 fs0 fc0 sc0 ls0 ws0">% <span class="_ _2"> </span><span class="ff1">初始化<span class="_ _1"> </span></span>GSWOA<span class="_ _2"> </span><span class="ff1">参数</span></div><div class="t m0 x1 h2 y14 ff2 fs0 fc0 sc0 ls0 ws0">% <span class="_ _2"> </span><span class="ff1">鲸鱼群规模、迭代次数等</span></div><div class="t m0 x1 h2 y15 ff2 fs0 fc0 sc0 ls0 ws0">gswoaParams = initializeGSWOAParams();</div><div class="t m0 x1 h2 y16 ff2 fs0 fc0 sc0 ls0 ws0">% <span class="_ _2"> </span><span class="ff1">进行优化循环</span></div><div class="t m0 x1 h2 y17 ff2 fs0 fc0 sc0 ls0 ws0">for iter = 1:gswoaParams.maxIterations</div><div class="t m0 x1 h2 y18 ff2 fs0 fc0 sc0 ls0 ws0"> <span class="_ _4"> </span>% <span class="_ _2"> </span><span class="ff1">根据<span class="_ _1"> </span></span>GSWOA<span class="_ _2"> </span><span class="ff1">的规则更新鲸鱼的位置和速度等参数</span></div><div class="t m0 x1 h2 y19 ff2 fs0 fc0 sc0 ls0 ws0"> <span class="_ _4"> </span>gswoaUpdate(elmanNet, gswoaParams);</div><div class="t m0 x1 h2 y1a ff2 fs0 fc0 sc0 ls0 ws0"> </div><div class="t m0 x1 h2 y1b ff2 fs0 fc0 sc0 ls0 ws0"> <span class="_ _4"> </span>% <span class="_ _2"> </span><span class="ff1">使用更新后的参数重新训练<span class="_ _1"> </span></span>Elman<span class="_ _2"> </span><span class="ff1">网络</span></div><div class="t m0 x1 h2 y1c ff2 fs0 fc0 sc0 ls0 ws0"> <span class="_ _4"> </span>[elmanNet, ~] = train(elmanNet, data); % <span class="_ _2"> </span><span class="ff1">这里我们简化地用<span class="_ _2"> </span></span>train<span class="_"> </span><span class="ff1">函数表示训练过程</span></div><div class="t m0 x1 h2 y1d ff2 fs0 fc0 sc0 ls0 ws0"> </div><div class="t m0 x1 h2 y1e ff2 fs0 fc0 sc0 ls0 ws0"> <span class="_ _4"> </span>% <span class="_ _2"> </span><span class="ff1">计算当前网络在训练集上的误差</span></div><div class="t m0 x1 h2 y1f ff2 fs0 fc0 sc0 ls0 ws0"> <span class="_ _4"> </span>currentTrainError = computeTrainError(elmanNet, data);</div><div class="t m0 x1 h2 y20 ff2 fs0 fc0 sc0 ls0 ws0"> <span class="_ _4"> </span>gswoaRecordTrainError(iter, currentTrainError); % <span class="_ _2"> </span><span class="ff1">记录误差以便后续分析</span></div><div class="t m0 x1 h2 y21 ff2 fs0 fc0 sc0 ls0 ws0">end</div><div class="t m0 x1 h2 y22 ff2 fs0 fc0 sc0 ls0 ws0">% <span class="_ _2"> </span><span class="ff1">建立多输入单输出的拟合预测模型</span></div><div class="t m0 x1 h2 y23 ff2 fs0 fc0 sc0 ls0 ws0">% <span class="_ _2"> </span><span class="ff1">使用优化后的<span class="_ _1"> </span></span>Elman<span class="_ _2"> </span><span class="ff1">网络进行预测</span></div><div class="t m0 x1 h2 y24 ff2 fs0 fc0 sc0 ls0 ws0">predictedOutput = predict(elmanNet, testData); % testData<span class="_ _2"> </span><span class="ff1">为测试集数据</span></div></div><div class="pi" data-data='{"ctm":[1.611830,0.000000,0.000000,1.611830,0.000000,0.000000]}'></div></div>
100+评论
captcha