MATLAB拓扑MPEC双层规划算法:探索最优微网运营策略与电价耦合求解,MATLAB实现带拓扑MPEC双层规划:Lindistflow与微网优化在IEEE 33bus系统中的探索,MATLAB代码:

hkhBjIHTDNNZIP代码全网唯一带拓扑微网双层规划关  6.7MB

资源文件列表:

ZIP 代码全网唯一带拓扑微网双层规划关 大约有13个文件
  1. 1.jpg 735.28KB
  2. 2.jpg 224.88KB
  3. 3.jpg 250.11KB
  4. 代码全网唯一带拓扑微网双.html 1.6MB
  5. 代码全网唯一带拓扑微网双层规划分析在电力电.html 1.6MB
  6. 代码全网唯一带拓扑微网双层规划随着能源领域的不.docx 18.5KB
  7. 代码深度解析超值研究的双层微网优化配置从与拓扑.docx 52.9KB
  8. 代码深度解析针对微网双层规划与.html 1.6MB
  9. 代码解析双层规划与微网优化控制随.docx 52.13KB
  10. 全网唯一带拓扑的微网双层规划实.html 1.61MB
  11. 双层规划是一种常用于解决复杂问题的优化方法它将.docx 14.55KB
  12. 技术博客文章探索.html 1.61MB
  13. 标题基于双层规划的微网拓扑优化算法研究摘.docx 51.68KB

资源介绍:

MATLAB拓扑MPEC双层规划算法:探索最优微网运营策略与电价耦合求解,MATLAB实现带拓扑MPEC双层规划:Lindistflow与微网优化在IEEE 33bus系统中的探索,MATLAB代码:全网唯一带拓扑MPEC,微网双层规划 关键词:双层规划 MPEC VPP ADN lindistflow KKT 参考文档:《Bi-Level Programming for Optimal Operation of an Active Distribution Network With Multiple Virtual Power Plants》2020 SCI一区 IEEE Transactions on Sustainable Energy, 半完美复现 仿真平台:MATLAB YALMIP GUROBI CPLEX MOSEK 主要内容: 1.半完美复现,没考虑Q,使用IEEE33 bus作为case,全网唯一带拓扑的MPEC; 2.使用solvebilevel函数求解上下层KKT,同时求解出耦合电价以及释放功率 3.上层为 Lindistflow,下层为三个微网,分别放置在33

<link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/css/base.min.css" rel="stylesheet"/><link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/css/fancy.min.css" rel="stylesheet"/><link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/90424616/2/raw.css" rel="stylesheet"/><div id="sidebar" style="display: none"><div id="outline"></div></div><div class="pf w0 h0" data-page-no="1" id="pf1"><div class="pc pc1 w0 h0"><img alt="" class="bi x0 y0 w1 h1" src="/image.php?url=https://csdnimg.cn/release/download_crawler_static/90424616/bg1.jpg"/><div class="t m0 x1 h2 y1 ff1 fs0 fc0 sc0 ls0 ws0">【技术博客文章:探索全网唯一带拓扑的<span class="_ _0"> </span><span class="ff2">MPEC<span class="_ _0"> </span></span>双层规划在微网中的应用】</div><div class="t m0 x1 h2 y2 ff1 fs0 fc0 sc0 ls0 ws0">各位技<span class="_ _1"></span>术爱好<span class="_ _1"></span>者们,<span class="_ _1"></span>今天我<span class="_ _1"></span>们要深<span class="_ _1"></span>入探讨<span class="_ _1"></span>的是一<span class="_ _1"></span>个颇为<span class="_ _1"></span>独特的<span class="_ _1"></span>课题<span class="ff2">——</span>全<span class="_ _1"></span>网唯一<span class="_ _1"></span>带拓扑<span class="_ _1"></span>的</div><div class="t m0 x1 h2 y3 ff2 fs0 fc0 sc0 ls0 ws0">MPEC<span class="_ _0"> </span><span class="ff1">双层规划在微网中的应用。让我们一起踏上这段奇妙的科技之旅吧!</span></div><div class="t m0 x1 h2 y4 ff1 fs0 fc0 sc0 ls0 ws0">一、半完美复现:揭开<span class="_ _0"> </span><span class="ff2">MPEC<span class="_ _0"> </span></span>的神秘面纱</div><div class="t m0 x1 h2 y5 ff1 fs0 fc0 sc0 ls0 ws0">在电力系统的研究中,<span class="ff2">MPEC</span>(数学规划中的数学模型)一直是一个备受关注的领域。而本</div><div class="t m0 x1 h2 y6 ff1 fs0 fc0 sc0 ls0 ws0">次我们面临<span class="_ _1"></span>的挑战,是<span class="_ _1"></span>在没有考虑<span class="_ _2"> </span><span class="ff2">Q<span class="_"> </span></span>的情况下,使用<span class="_ _0"> </span><span class="ff2">IEEE33 bus<span class="_"> </span></span>作为案例<span class="_ _1"></span>,构建全网<span class="_ _1"></span>唯一</div><div class="t m0 x1 h2 y7 ff1 fs0 fc0 sc0 ls0 ws0">带拓扑的<span class="_ _0"> </span><span class="ff2">MPEC<span class="_ _0"> </span></span>模型。<span class="_ _3"></span>这无疑是一个极具挑战性的任务,<span class="_ _3"></span>但正是这种挑战,<span class="_ _3"></span>让我们有机会一</div><div class="t m0 x1 h2 y8 ff1 fs0 fc0 sc0 ls0 ws0">窥<span class="_ _0"> </span><span class="ff2">MPEC<span class="_ _0"> </span></span>的奥秘。</div><div class="t m0 x1 h2 y9 ff1 fs0 fc0 sc0 ls0 ws0">二、双层规划的魅力:上下层<span class="_ _0"> </span><span class="ff2">KKT<span class="_ _0"> </span></span>的求解之旅</div><div class="t m0 x1 h2 ya ff1 fs0 fc0 sc0 ls0 ws0">当我们提到双层<span class="_ _1"></span>规划,不禁让<span class="_ _1"></span>人想起那复杂的<span class="_ _1"></span>上下层关系。<span class="_ _1"></span>而本次我们采用<span class="_ _2"> </span><span class="ff2">solvebilevel<span class="_ _0"> </span></span>函</div><div class="t m0 x1 h2 yb ff1 fs0 fc0 sc0 ls0 ws0">数来求<span class="_ _1"></span>解上<span class="_ _1"></span>下层<span class="_ _1"></span>的<span class="_ _0"> </span><span class="ff2">KKT<span class="_"> </span></span>条件<span class="_ _1"></span>。这<span class="_ _1"></span>不仅<span class="_ _1"></span>是一个<span class="_ _1"></span>技术<span class="_ _1"></span>上的<span class="_ _1"></span>突破<span class="_ _1"></span>,更<span class="_ _1"></span>是对<span class="_ _1"></span>双层规<span class="_ _1"></span>划理<span class="_ _1"></span>论的<span class="_ _1"></span>一次<span class="_ _1"></span>实</div><div class="t m0 x1 h2 yc ff1 fs0 fc0 sc0 ls0 ws0">践。<span class="_ _3"></span>在求解的过程中,<span class="_ _4"></span>我们能够同时得到耦合电价以及释放功率的信息,<span class="_ _3"></span>为后续的分析和优</div><div class="t m0 x1 h2 yd ff1 fs0 fc0 sc0 ls0 ws0">化提供了坚实的基础。</div><div class="t m0 x1 h2 ye ff1 fs0 fc0 sc0 ls0 ws0">三、<span class="ff2">Lindistflow<span class="_ _0"> </span></span>与微网的奇妙组合</div><div class="t m0 x1 h2 yf ff1 fs0 fc0 sc0 ls0 ws0">在我们的模型中,<span class="_ _3"></span>上层采用的是<span class="_ _0"> </span><span class="ff2">Lindistflow<span class="_ _0"> </span></span>算法,<span class="_ _3"></span>而下层则是由三个微网构成,<span class="_ _3"></span>分别放置在</div><div class="t m0 x1 h2 y10 ff2 fs0 fc0 sc0 ls0 ws0">33bus<span class="_ _0"> </span><span class="ff1">中的第<span class="_ _0"> </span></span>8<span class="ff1">、<span class="_ _5"></span><span class="ff2">15<span class="ff1">、<span class="_ _5"></span><span class="ff2">28<span class="_"> </span><span class="ff1">节点。<span class="_ _4"></span>这样的组合带来了许多新的可能性,<span class="_ _5"></span>让微网系统变得更加智</span></span></span></span></span></div><div class="t m0 x1 h2 y11 ff1 fs0 fc0 sc0 ls0 ws0">能和高效。</div><div class="t m0 x1 h2 y12 ff1 fs0 fc0 sc0 ls0 ws0">四、仿真平台的强大支持</div></div><div class="pi" data-data='{"ctm":[1.611830,0.000000,0.000000,1.611830,0.000000,0.000000]}'></div></div>
100+评论
captcha