20240903003104.zip2301_78570122ZIP20240903003104.zip 189.89KB 立即下载资源文件列表:ZIP 20240903003104.zip 大约有1个文件 AHP中不一致性判断矩阵调整的新方法.pdf 203.17KB 资源介绍: 20240903003104.zip <link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/css/base.min.css" rel="stylesheet"/><link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/css/fancy.min.css" rel="stylesheet"/><link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/89707154/raw.css" rel="stylesheet"/><div id="sidebar" style="display: none"><div id="outline"></div></div><div class="pf w0 h0" data-page-no="1" id="pf1"><div class="pc pc1 w0 h0"><img alt="" class="bi x0 y0 w1 h1" src="/image.php?url=https://csdnimg.cn/release/download_crawler_static/89707154/bg1.jpg"/><div class="t m0 x1 h2 y1 ff1 fs0 fc0 sc0 ls0 ws0"> <span class="ff2 fs1">2<span class="_ _0"></span>0<span class="_ _0"></span>0<span class="_ _0"></span>4<span class="_ _1"> </span></span>年<span class="_ _1"> </span><span class="ff2 fs1">6<span class="_"> </span></span>月<span class="_ _2"> </span>系统工程理论与实践<span class="_ _3"> </span>第<span class="_ _1"> </span><span class="ff2 fs1">6<span class="_"> </span></span>期 </div><div class="t m0 x2 h3 y2 ff3 fs0 fc0 sc0 ls0 ws0">文章编号<span class="_ _4"></span><span class="ff2 fs1">:<span class="_ _5"> </span>1<span class="_ _0"></span>0<span class="_ _0"></span>0<span class="_ _0"></span>0<span class="ff4 fs0">2<span class="_ _4"></span><span class="ff2 fs1">67<span class="_ _0"></span>8<span class="_ _0"></span>8</span></span></span></div><div class="t m0 x3 h4 y3 ff2 fs1 fc0 sc0 ls0 ws0">(</div><div class="t m0 x4 h4 y2 ff2 fs1 fc0 sc0 ls0 ws0">2<span class="_ _0"></span>0<span class="_ _0"></span>0<span class="_ _0"></span>4</div><div class="t m0 x5 h4 y3 ff2 fs1 fc0 sc0 ls0 ws0">)</div><div class="t m0 x6 h3 y2 ff2 fs1 fc0 sc0 ls0 ws0">0<span class="_ _0"></span>6<span class="ff4 fs0">2<span class="_ _4"></span><span class="ff2 fs1">00<span class="_ _0"></span>8<span class="_ _0"></span>4<span class="_ _0"></span><span class="ff4 fs0">2<span class="_ _6"></span><span class="ff2 fs1">0<span class="_ _0"></span>9</span></span></span></span></div><div class="t m0 x7 h5 y4 ff2 fs2 fc0 sc0 ls0 ws0">A<span class="_ _7"></span>H<span class="_ _7"></span>P</div><div class="t m0 x8 h6 y5 ff1 fs3 fc0 sc0 ls0 ws0">中<span class="_ _8"></span>不<span class="_ _8"></span>一<span class="_ _8"></span>致<span class="_ _8"></span>性<span class="_ _8"></span>判<span class="_ _8"></span>断<span class="_ _8"></span>矩<span class="_ _8"></span>阵<span class="_ _8"></span>调<span class="_ _8"></span>整<span class="_ _8"></span>的<span class="_ _8"></span>新<span class="_ _8"></span>方<span class="_ _8"></span>法</div><div class="t m1 x9 h7 y6 ff1 fs4 fc0 sc0 ls0 ws0">骆正清</div><div class="t m0 xa h8 y7 ff2 fs5 fc0 sc0 ls0 ws0">(</div><div class="t m0 xb h9 y8 ff1 fs6 fc0 sc0 ls0 ws0">合肥工业大学管理学院<span class="ff2 fs5">,<span class="_ _9"> </span></span>安徽<span class="_ _1"> </span>合肥<span class="_ _0"></span> <span class="ff2 fs5">23<span class="_ _0"></span>0<span class="_ _0"></span>0<span class="_ _0"></span>09</span></div><div class="t m0 xc h8 y7 ff2 fs5 fc0 sc0 ls0 ws0">)</div><div class="t m0 xd h9 y9 ff3 fs6 fc0 sc0 ls0 ws0">摘要<span class="_ _8"></span><span class="ff2 fs5">:<span class="_ _a"> </span><span class="ff3 fs6"> <span class="ff1">设计<span class="_ _0"></span>了一<span class="_ _0"></span>种交<span class="_ _0"></span>互式<span class="_ _0"></span>的<span class="_ _0"></span>算<span class="_ _0"></span>法</span></span>,<span class="_ _a"> </span><span class="ff1 fs6">用<span class="_ _0"></span>该算<span class="_ _0"></span>法<span class="_ _0"></span>调<span class="_ _0"></span>整<span class="_ _0"></span>不<span class="_ _0"></span>一<span class="_ _0"></span>致性<span class="_ _0"></span>判<span class="_ _0"></span>断<span class="_ _0"></span>矩<span class="_ _0"></span>阵</span>,<span class="_ _a"> </span><span class="ff1 fs6">可<span class="_ _0"></span>以<span class="_ _0"></span>得<span class="_ _0"></span>到多<span class="_ _0"></span>个<span class="_ _0"></span>满<span class="_ _0"></span>足<span class="_ _0"></span>一<span class="_ _0"></span>致<span class="_ _0"></span>性要<span class="_ _0"></span>求<span class="_ _0"></span>的</span></span></div><div class="t m0 xd h9 ya ff1 fs6 fc0 sc0 ls0 ws0">合理方案<span class="ff2 fs5">,<span class="_ _7"> </span></span>专<span class="_ _0"></span>家或决策者可根据自己的<span class="_ _0"></span>意愿<span class="ff2 fs5">,<span class="_"> </span></span>从这<span class="_ _0"></span>些方案中选择一个满意<span class="_ _0"></span>的方案<span class="_ _b"></span><span class="ff2 fs5">.<span class="_ _c"> </span><span class="ff1 fs6">实验表明<span class="_ _8"></span><span class="ff2 fs5">:<span class="_"> </span><span class="ff1 fs6">该<span class="_ _0"></span>算法是有</span></span></span></span></div><div class="t m0 xd h9 yb ff1 fs6 fc0 sc0 ls0 ws0">效的<span class="_ _6"></span>、<span class="_ _d"></span>可行的<span class="_ _b"></span><span class="ff2 fs5">.</span></div><div class="t m0 xd h9 yc ff3 fs6 fc0 sc0 ls0 ws0">关键词<span class="_ _8"></span><span class="ff2 fs5">:<span class="_"> </span><span class="ff3 fs6"> <span class="_ _0"></span><span class="ff1">层次分析法<span class="_ _8"></span><span class="ff2 fs5">;<span class="_ _e"> </span><span class="ff1 fs6">判断矩阵调整<span class="_ _8"></span><span class="ff2 fs5">;<span class="_ _e"> </span><span class="ff1 fs6">交互式算法</span></span></span></span></span></span></span></div><div class="t m0 xd h9 yd ff3 fs6 fc0 sc0 ls0 ws0">中图分类号<span class="_ _8"></span><span class="ff2 fs5">:<span class="_"> </span><span class="ff3 fs6"> </span></span></div><div class="t m0 xe h8 ye ff2 fs5 fc0 sc0 ls0 ws0">O</div><div class="t m0 xf h9 yd ff2 fs5 fc0 sc0 ls0 ws0">22<span class="_ _0"></span>3<span class="ff1 fs6"> <span class="_ _0"></span> <span class="ff3">文献标<span class="_ _0"></span>识码<span class="_ _4"></span><span class="ff2 fs5">:<span class="_ _1"> </span><span class="ff3 fs6"> </span></span></span></span></div><div class="t m0 x10 h8 ye ff2 fs5 fc0 sc0 ls0 ws0">A</div><div class="t m0 x11 h9 yd ff1 fs6 fc0 sc0 ls0 ws0"> </div><div class="t m0 x12 h5 yf ff2 fs2 fc0 sc0 ls0 ws0">A<span class="_ _c"> </span>N<span class="_ _1"> </span>e<span class="_ _6"></span>w<span class="_ _f"> </span>M<span class="_ _10"> </span>e<span class="_ _11"></span>t<span class="_ _12"></span>ho<span class="_ _11"></span>d<span class="_ _13"> </span>f<span class="_ _8"></span>o<span class="_ _7"></span>r<span class="_ _14"> </span>A<span class="_ _5"> </span>d<span class="_ _15"></span>j<span class="_ _4"></span>u<span class="_ _15"></span>s<span class="_ _11"></span>t<span class="_ _11"></span>i<span class="_ _4"></span>n<span class="_ _12"></span>g<span class="_ _16"> </span>I<span class="_ _6"></span>n<span class="_ _17"></span>c<span class="_ _4"></span>o<span class="_ _11"></span>n<span class="_ _15"></span>s<span class="_ _17"></span>is<span class="_ _17"></span>t<span class="_ _12"></span>e<span class="_ _12"></span>n<span class="_ _17"></span>cy</div><div class="t m0 x13 h5 y10 ff2 fs2 fc0 sc0 ls0 ws0">J<span class="_ _15"></span>u<span class="_ _17"></span>d<span class="_ _12"></span>g<span class="_ _6"></span>m<span class="_ _a"> </span>e<span class="_ _12"></span>n<span class="_ _18"></span>t<span class="_ _1"> </span>M<span class="_ _10"> </span>a<span class="_ _15"></span>t<span class="_ _15"></span>r<span class="_ _11"></span>i<span class="_ _6"></span>x<span class="_ _19"> </span>i<span class="_ _4"></span>n<span class="_ _10"> </span>A<span class="_ _18"></span>H<span class="_ _7"></span>P</div><div class="t m0 x14 ha y11 ff2 fs7 fc0 sc0 ls0 ws0">L<span class="_ _17"></span>U<span class="_ _11"></span>O<span class="_ _13"> </span>Z<span class="_ _0"></span>h<span class="_ _17"></span>e<span class="_ _0"></span>n<span class="_ _17"></span>g</div><div class="t m0 x15 hb y12 ff4 fs8 fc0 sc0 ls0 ws0">2</div><div class="t m0 x16 ha y11 ff2 fs7 fc0 sc0 ls0 ws0">q<span class="_ _17"></span>i<span class="_ _4"></span>n<span class="_ _17"></span>g</div><div class="t m0 x17 h8 y13 ff2 fs5 fc0 sc0 ls0 ws0">(</div><div class="t m0 x18 h8 y14 ff2 fs5 fc0 sc0 ls0 ws0">Scho<span class="_ _0"></span>o<span class="_ _11"> </span>l<span class="_"> </span>o<span class="_ _12"></span>f<span class="_ _11"> </span>M<span class="_ _7"> </span>a<span class="_ _0"></span>n<span class="_ _12"></span>a<span class="_ _0"></span>g<span class="_ _0"></span>e<span class="_ _4"></span>m<span class="_ _11"> </span>e<span class="_ _0"></span>n<span class="_ _17"></span>t</div><div class="t m0 x19 h8 y15 ff2 fs5 fc0 sc0 ls0 ws0">,</div><div class="t m0 x1a h8 y14 ff2 fs5 fc0 sc0 ls0 ws0">H<span class="_ _17"></span>e<span class="_ _0"></span>f<span class="_ _0"></span>e<span class="_ _12"></span>i<span class="_ _11"> </span>U<span class="_"> </span>n<span class="_ _17"></span>i<span class="_ _8"></span>ve<span class="_ _12"></span>r<span class="_ _12"></span>s<span class="_ _12"></span>it<span class="_ _0"></span>y<span class="_"> </span>o<span class="_ _17"></span>f<span class="_ _5"> </span>T<span class="_ _17"></span>e<span class="_ _0"></span>ch<span class="_ _12"></span>no<span class="_ _11"></span>l<span class="_ _6"></span>o<span class="_ _17"></span>g<span class="_ _0"></span>y</div><div class="t m0 x1b h8 y15 ff2 fs5 fc0 sc0 ls0 ws0">,</div><div class="t m0 x1c h8 y14 ff2 fs5 fc0 sc0 ls0 ws0">H<span class="_ _17"></span>e<span class="_ _0"></span>f<span class="_ _0"></span>e<span class="_ _12"></span>i</div><div class="t m0 x1d h8 y15 ff2 fs5 fc0 sc0 ls0 ws0">23<span class="_ _0"></span>0<span class="_ _0"></span>0<span class="_ _0"></span>09<span class="_ _0"></span>,</div><div class="t m0 x1e h8 y14 ff2 fs5 fc0 sc0 ls0 ws0">C<span class="_ _12"></span>h<span class="_ _11"></span>i<span class="_ _4"></span>n<span class="_ _0"></span>a</div><div class="t m0 x1f h8 y13 ff2 fs5 fc0 sc0 ls0 ws0">)</div><div class="t m0 x20 hc y16 ff5 fs5 fc0 sc0 ls0 ws0">A<span class="_ _12"></span>b<span class="_ _0"></span>s<span class="_ _0"></span>t<span class="_ _8"></span>r<span class="_ _8"></span>a<span class="_ _0"></span>c<span class="_ _12"></span>t</div><div class="t m0 x21 h9 y17 ff2 fs5 fc0 sc0 ls0 ws0">:<span class="_ _5"> </span><span class="ff1 fs6"> </span></div><div class="t m0 x22 h8 y16 ff2 fs5 fc0 sc0 ls0 ws0">A<span class="_ _15"> </span>n<span class="_ _1a"> </span>i<span class="_ _4"></span>n<span class="_ _11"></span>te<span class="_ _12"></span>r<span class="_ _0"></span>a<span class="_ _0"></span>c<span class="_ _12"></span>t<span class="_ _17"></span>i<span class="_ _4"></span>v<span class="_ _0"></span>e<span class="_ _14"> </span>a<span class="_ _17"></span>l<span class="_ _8"></span>g<span class="_ _8"></span>o<span class="_ _11"></span>r<span class="_ _12"></span>it<span class="_ _0"></span>h<span class="_ _4"></span>m<span class="_ _f"> </span>fo<span class="_ _17"></span>r<span class="_ _10"> </span>ad<span class="_ _17"></span>j<span class="_ _8"></span>u<span class="_ _17"></span>s<span class="_ _0"></span>t<span class="_ _17"></span>i<span class="_ _4"></span>n<span class="_ _12"></span>g<span class="_ _1b"> </span>i<span class="_ _4"></span>n<span class="_ _12"></span>c<span class="_ _4"></span>o<span class="_ _17"></span>n<span class="_ _17"></span>s<span class="_ _12"></span>is<span class="_ _0"></span>t<span class="_ _0"></span>e<span class="_ _0"></span>n<span class="_ _12"></span>cy<span class="_ _10"> </span>j<span class="_ _4"></span>u<span class="_ _12"></span>d<span class="_ _0"></span>g<span class="_ _4"></span>m<span class="_ _11"> </span>e<span class="_ _0"></span>n<span class="_ _11"></span>t<span class="_ _a"> </span>m<span class="_ _11"> </span>a<span class="_ _17"></span>t<span class="_ _12"></span>r<span class="_ _17"></span>i<span class="_ _4"></span>x<span class="_ _1a"> </span>is<span class="_ _1"> </span>p<span class="_ _15"> </span>r<span class="_ _8"></span>op<span class="_ _12"></span>o<span class="_ _11"></span>s<span class="_ _8"></span>ed</div><div class="t m0 x23 h8 y17 ff2 fs5 fc0 sc0 ls0 ws0">.</div><div class="t m0 x24 h8 y16 ff2 fs5 fc0 sc0 ls0 ws0">B<span class="_ _17"></span>y<span class="_ _1b"> </span>th<span class="_ _12"></span>e</div><div class="t m0 xd h8 y18 ff2 fs5 fc0 sc0 ls0 ws0">a<span class="_ _12"></span>lg<span class="_ _8"></span>o<span class="_ _11"></span>r<span class="_ _12"></span>ith<span class="_ _8"></span>m</div><div class="t m0 x25 h8 y19 ff2 fs5 fc0 sc0 ls0 ws0">,</div><div class="t m0 x17 h8 y18 ff2 fs5 fc0 sc0 ls0 ws0">seve<span class="_ _17"></span>ra<span class="_ _17"></span>l<span class="_ _5"> </span>ra<span class="_ _17"></span>t<span class="_ _17"></span>i<span class="_ _6"></span>o<span class="_ _12"></span>n<span class="_ _12"></span>a<span class="_ _12"></span>l<span class="_ _5"> </span>s<span class="_ _4"></span>o<span class="_ _11"> </span>lu<span class="_ _17"></span>t<span class="_ _12"></span>i<span class="_ _6"></span>o<span class="_ _17"></span>n<span class="_ _17"></span>s<span class="_ _a"> </span>ca<span class="_ _0"></span>n<span class="_ _14"> </span>b<span class="_ _0"></span>e<span class="_ _7"> </span>o<span class="_ _17"></span>b<span class="_ _17"></span>t<span class="_ _0"></span>a<span class="_ _17"></span>i<span class="_ _4"></span>n<span class="_ _12"></span>ed</div><div class="t m0 x26 h8 y19 ff2 fs5 fc0 sc0 ls0 ws0">,</div><div class="t m0 x27 h8 y18 ff2 fs5 fc0 sc0 ls0 ws0">a<span class="_ _0"></span>n<span class="_ _12"></span>d<span class="_ _14"> </span>tho<span class="_ _11"> </span>se<span class="_ _14"> </span>s<span class="_ _4"></span>o<span class="_ _11"> </span>l<span class="_ _8"></span>u<span class="_ _17"></span>t<span class="_ _17"></span>i<span class="_ _6"></span>o<span class="_ _12"></span>n<span class="_ _17"></span>s<span class="_ _a"> </span>f<span class="_ _12"></span>it<span class="_ _14"> </span>to<span class="_ _10"> </span>th<span class="_ _12"></span>e<span class="_ _1"> </span>c<span class="_ _8"></span>o<span class="_ _12"></span>n<span class="_ _17"></span>s<span class="_ _12"></span>is<span class="_ _0"></span>t<span class="_ _0"></span>en<span class="_ _12"></span>cy<span class="_ _5"> </span>r<span class="_ _0"></span>e<span class="_ _0"></span>qu<span class="_ _11"></span>ire</div><div class="t m0 x28 h8 y19 ff2 fs5 fc0 sc0 ls0 ws0">.</div><div class="t m0 x29 h8 y1a ff2 fs5 fc0 sc0 ls0 ws0">M<span class="_ _7"> </span>e<span class="_ _0"></span>a<span class="_ _0"></span>n<span class="_ _1c"></span>w<span class="_ _15"> </span>h<span class="_ _17"></span>ile<span class="_ _a"> </span>e<span class="_ _0"></span>xp<span class="_ _17"></span>e<span class="_ _12"></span>r<span class="_ _17"></span>t<span class="_ _12"></span>s<span class="_"> </span>o<span class="_ _11"> </span>r<span class="_ _1"> </span>d<span class="_ _0"></span>e<span class="_ _0"></span>c<span class="_ _12"></span>is<span class="_ _0"></span>i<span class="_ _6"></span>o<span class="_ _17"></span>n<span class="_ _15"> </span>m<span class="_ _11"> </span>a<span class="_ _0"></span>k<span class="_ _12"></span>e<span class="_ _17"></span>r<span class="_ _a"> </span>ca<span class="_ _0"></span>n<span class="_ _1"> </span>cho<span class="_ _0"></span>o<span class="_ _11"> </span>se<span class="_ _a"> </span>a<span class="_ _0"></span>n<span class="_ _12"></span>y<span class="_"> </span>o<span class="_ _12"></span>n<span class="_ _12"></span>e<span class="_ _a"> </span>f<span class="_ _12"></span>ro<span class="_ _4"></span>m<span class="_ _1a"> </span>t<span class="_ _0"></span>h<span class="_ _12"></span>e<span class="_ _5"> </span>s<span class="_ _1c"></span>o<span class="_ _11"></span>l<span class="_ _1c"></span>u<span class="_ _11"></span>t<span class="_ _12"></span>i<span class="_ _6"></span>o<span class="_ _12"></span>n<span class="_ _11"></span>s<span class="_"> </span>b<span class="_ _0"></span>y<span class="_ _14"> </span>t<span class="_ _0"></span>h<span class="_ _12"></span>e<span class="_ _6"></span>m<span class="_"> </span>se<span class="_ _17"></span>l<span class="_ _1c"></span>v<span class="_ _0"></span>e<span class="_ _12"></span>s<span class="_ _15"> </span>p<span class="_ _15"> </span>r<span class="_ _0"></span>ef<span class="_ _0"></span>e<span class="_ _17"></span>re<span class="_ _0"></span>n<span class="_ _0"></span>ce<span class="_ _17"></span>s<span class="_ _a"> </span>i<span class="_ _1c"></span>f</div><div class="t m0 x20 h8 y1b ff2 fs5 fc0 sc0 ls0 ws0">o<span class="_ _12"></span>n<span class="_ _17"></span>ly<span class="_ _14"> </span>t<span class="_ _0"></span>h<span class="_ _12"></span>e<span class="_ _0"></span>y<span class="_ _1d"> </span>th<span class="_ _12"></span>a<span class="_ _0"></span>n<span class="_ _12"></span>k<span class="_ _10"> </span>t<span class="_ _0"></span>h<span class="_ _12"></span>a<span class="_ _17"></span>t<span class="_ _1d"> </span>t<span class="_ _0"></span>h<span class="_ _12"></span>e<span class="_ _1d"> </span>s<span class="_ _4"></span>o<span class="_ _11"> </span>lu<span class="_ _17"></span>t<span class="_ _12"></span>i<span class="_ _6"></span>o<span class="_ _17"></span>n<span class="_ _1d"> </span>is<span class="_ _14"> </span>sa<span class="_ _17"></span>t<span class="_ _12"></span>isfy<span class="_ _17"></span>i<span class="_ _4"></span>n<span class="_ _12"></span>g</div><div class="t m0 x2a h8 y1c ff2 fs5 fc0 sc0 ls0 ws0">.</div><div class="t m0 x2b h8 y1b ff2 fs5 fc0 sc0 ls0 ws0">E<span class="_ _12"></span>xp<span class="_ _17"></span>e<span class="_ _12"></span>r<span class="_ _12"></span>i<span class="_ _b"></span>m<span class="_ _15"> </span>en<span class="_ _11"></span>t<span class="_ _12"></span>s<span class="_ _14"> </span>i<span class="_ _4"></span>n<span class="_ _12"></span>d<span class="_ _12"></span>i<span class="_ _1c"></span>ca<span class="_ _17"></span>te<span class="_ _1d"> </span>t<span class="_ _0"></span>h<span class="_ _12"></span>a<span class="_ _17"></span>t<span class="_ _1d"> </span>t<span class="_ _0"></span>h<span class="_ _12"></span>e<span class="_ _14"> </span>a<span class="_ _12"></span>lg<span class="_ _1c"></span>o<span class="_ _11"> </span>r<span class="_ _12"></span>it<span class="_ _0"></span>h<span class="_ _1c"></span>m<span class="_ _f"> </span>is<span class="_ _1"> </span>e<span class="_ _0"></span>f<span class="_ _0"></span>fe<span class="_ _0"></span>c<span class="_ _12"></span>t<span class="_ _17"></span>i<span class="_ _4"></span>v<span class="_ _0"></span>e<span class="_ _5"> </span>a<span class="_ _0"></span>n<span class="_ _12"></span>d</div><div class="t m0 x20 h8 y1d ff2 fs5 fc0 sc0 ls0 ws0">p<span class="_ _11"> </span>r<span class="_ _0"></span>a<span class="_ _0"></span>c<span class="_ _12"></span>t<span class="_ _12"></span>i<span class="_ _1c"></span>ca<span class="_ _17"></span>l</div><div class="t m0 x2c h8 y1e ff2 fs5 fc0 sc0 ls0 ws0">.</div><div class="t m0 xd hc y1f ff5 fs5 fc0 sc0 ls0 ws0">Key<span class="_ _1"> </span>wor<span class="_ _0"></span>d<span class="_ _12"></span>s</div><div class="t m0 x2d h9 y20 ff2 fs5 fc0 sc0 ls0 ws0">:<span class="_ _a"> </span><span class="ff1 fs6"> </span></div><div class="t m0 x2e h8 y1f ff2 fs5 fc0 sc0 ls0 ws0">a<span class="_ _0"></span>n<span class="_ _12"></span>a<span class="_ _12"></span>ly<span class="_ _12"></span>t<span class="_ _12"></span>i<span class="_ _1c"></span>c<span class="_ _1"> </span>h<span class="_ _17"></span>i<span class="_ _1c"></span>e<span class="_ _17"></span>ra<span class="_ _17"></span>rch<span class="_ _12"></span>y<span class="_ _7"> </span>p<span class="_ _15"> </span>r<span class="_ _1c"></span>o<span class="_ _17"></span>ce<span class="_ _12"></span>s<span class="_ _12"></span>s<span class="_ _11"> </span>A<span class="_ _11"> </span>H<span class="_ _17"></span>P</div><div class="t m0 x2f h8 y20 ff2 fs5 fc0 sc0 ls0 ws0">;</div><div class="t m0 x9 h8 y1f ff2 fs5 fc0 sc0 ls0 ws0">a<span class="_ _0"></span>d<span class="_ _17"></span>j<span class="_ _4"></span>u<span class="_ _11"></span>s<span class="_ _0"></span>t<span class="_ _4"></span>m<span class="_ _11"> </span>e<span class="_ _0"></span>n<span class="_ _17"></span>t<span class="_ _a"> </span>o<span class="_ _12"></span>f<span class="_ _1d"> </span>j<span class="_ _1c"></span>u<span class="_ _12"></span>dg<span class="_ _4"></span>m<span class="_ _15"> </span>en<span class="_ _11"></span>t<span class="_ _15"> </span>m<span class="_ _15"> </span>a<span class="_ _17"></span>t<span class="_ _12"></span>r<span class="_ _17"></span>i<span class="_ _4"></span>x</div><div class="t m0 x30 h8 y20 ff2 fs5 fc0 sc0 ls0 ws0">;</div><div class="t m0 x31 h8 y1f ff2 fs5 fc0 sc0 ls0 ws0">i<span class="_ _4"></span>n<span class="_ _11"></span>te<span class="_ _12"></span>r<span class="_ _0"></span>a<span class="_ _0"></span>c<span class="_ _12"></span>t<span class="_ _17"></span>i<span class="_ _4"></span>v<span class="_ _0"></span>e<span class="_ _1"> </span>a<span class="_ _17"></span>l<span class="_ _8"></span>g<span class="_ _8"></span>o<span class="_ _11"></span>r<span class="_ _12"></span>it<span class="_ _0"></span>h<span class="_ _4"></span>m</div><div class="t m0 x32 hd y21 ff3 fs6 fc0 sc0 ls0 ws0">收稿日期<span class="_ _1c"></span><span class="ff2 fs5">:<span class="_ _a"> </span>2<span class="_ _0"></span>0<span class="_ _0"></span>03<span class="_ _0"></span><span class="ff4 fs6">2<span class="_ _6"></span><span class="ff2 fs5">0<span class="_ _0"></span>8<span class="_ _0"></span><span class="ff4 fs6">2<span class="_ _6"></span><span class="ff2 fs5">0<span class="_ _0"></span>4</span></span></span></span></span></div><div class="t m0 x32 h9 y22 ff3 fs6 fc0 sc0 ls0 ws0">资助项目<span class="_ _1c"></span><span class="ff2 fs5">:<span class="_ _a"> </span><span class="ff1 fs6">国家自然<span class="_ _0"></span>科学基金</span></span></div><div class="t m0 x33 h8 y23 ff2 fs5 fc0 sc0 ls0 ws0">(</div><div class="t m0 x34 h8 y22 ff2 fs5 fc0 sc0 ls0 ws0">79<span class="_ _0"></span>8<span class="_ _0"></span>0<span class="_ _0"></span>00<span class="_ _0"></span>2<span class="_ _0"></span>4</div><div class="t m0 x35 h8 y23 ff2 fs5 fc0 sc0 ls0 ws0">)</div><div class="t m0 x2 h9 y24 ff1 fs6 fc0 sc0 ls0 ws0"> <span class="ff3">作者简介<span class="_ _1c"></span><span class="ff2 fs5">:<span class="_ _a"> </span><span class="ff1 fs6">骆正清</span></span></span></div><div class="t m0 x36 h8 y25 ff2 fs5 fc0 sc0 ls0 ws0">(</div><div class="t m0 x2e h8 y24 ff2 fs5 fc0 sc0 ls0 ws0">19<span class="_ _0"></span>6<span class="_ _0"></span>3<span class="_ _0"></span>-</div><div class="t m0 x37 h8 y25 ff2 fs5 fc0 sc0 ls0 ws0">)</div><div class="t m0 x38 h9 y24 ff2 fs5 fc0 sc0 ls0 ws0">,<span class="_"> </span><span class="ff1 fs6">男</span>,<span class="_ _a"> </span><span class="ff1 fs6">安徽繁昌人</span>,<span class="_ _7"> </span><span class="ff1 fs6">博士</span>,<span class="_ _a"> </span><span class="ff1 fs6">副教授<span class="_ _b"></span><span class="ff2 fs5">.<span class="_ _9"> </span><span class="ff1 fs6">研究方向<span class="_ _1c"></span><span class="ff2 fs5">:<span class="_ _a"> </span><span class="ff1 fs6">多目标决策</span>,<span class="_ _a"> </span><span class="ff1 fs6">企业知识管理</span></span></span></span></span></div><div class="t m0 x2 he y26 ff5 fs7 fc0 sc0 ls0 ws0">1<span class="_ _0"></span><span class="ff3 fs8"> 引言</span></div><div class="t m0 x39 h2 y27 ff1 fs0 fc0 sc0 ls0 ws0">作为一种定性与定量相结合的<span class="_ _8"></span>决策工具<span class="ff2 fs1">,<span class="_"> </span></span>层次分析法在相关<span class="_ _0"></span>领域得<span class="_ _0"></span>到了广<span class="_ _0"></span>泛的应用<span class="_ _b"></span><span class="ff2 fs1">.<span class="_ _1e"> </span><span class="ff1 fs0">然而</span>,<span class="_ _1"> </span><span class="ff1 fs0">运用该<span class="_ _0"></span>方</span></span></div><div class="t m0 x2 h2 y28 ff1 fs0 fc0 sc0 ls0 ws0">法进行方<span class="_ _0"></span>案排序<span class="_ _0"></span>时<span class="ff2 fs1">,<span class="_ _a"> </span></span>构<span class="_ _0"></span>造出来<span class="_ _0"></span>的判断矩<span class="_ _0"></span>阵往往<span class="_ _0"></span>不能满<span class="_ _0"></span>足一致性<span class="_ _0"></span>要求<span class="ff2 fs1">,<span class="_ _1"> </span></span>因此<span class="ff2 fs1">,<span class="_ _1"> </span></span>如<span class="_ _0"></span>何调<span class="_ _0"></span>整<span class="_ _0"></span>已构<span class="_ _0"></span>造<span class="_ _0"></span>出的<span class="_ _0"></span>判<span class="_ _0"></span>断<span class="_ _0"></span>矩阵</div><div class="t m0 x2 h2 y29 ff1 fs0 fc0 sc0 ls0 ws0">并使之通过一致性检验<span class="ff2 fs1">,<span class="_"> </span></span>一直困扰着人们<span class="_ _1f"></span><span class="ff2 fs1">.<span class="_ _1e"> </span><span class="ff1 fs0">近年来有些学者已提出了一些<span class="_ _0"></span>调整方<span class="_ _0"></span>法</span>,<span class="_ _a"> </span><span class="ff1 fs0">这<span class="_ _0"></span>些方法<span class="_ _0"></span>总体上可<span class="_ _0"></span>归</span></span></div><div class="t m0 x2 h2 y2a ff1 fs0 fc0 sc0 ls0 ws0">为<span class="_ _0"></span>两大<span class="_ _0"></span>类<span class="_ _4"></span><span class="ff2 fs1">:<span class="_ _14"> </span><span class="ff1 fs0">一类<span class="_ _0"></span>可称<span class="_ _0"></span>为<span class="_ _0"></span>机<span class="_ _0"></span>械法</span></span></div><div class="t m0 x3a hf y2b ff2 fs9 fc0 sc0 ls0 ws0">[<span class="_ _12"></span>1<span class="_ _0"></span>-<span class="_ _10"> </span>4<span class="_ _17"></span>]</div><div class="t m0 x3b h2 y2a ff2 fs1 fc0 sc0 ls0 ws0">,<span class="_ _1"> </span><span class="ff1 fs0">一类<span class="_ _12"></span>可称<span class="_ _0"></span>为<span class="_ _0"></span>主<span class="_ _0"></span>观<span class="_ _0"></span>法</span></div><div class="t m0 x3c hf y2b ff2 fs9 fc0 sc0 ls0 ws0">[<span class="_ _12"></span>5<span class="_ _0"></span>,<span class="_"> </span>6<span class="_ _17"> </span>]</div><div class="t m0 x3d h2 y2a ff2 fs1 fc0 sc0 ls0 ws0">.<span class="_ _20"> </span><span class="ff1 fs0">所<span class="_ _0"></span>谓<span class="_ _0"></span>机<span class="_ _0"></span>械<span class="_ _0"></span>法</span>,<span class="_ _1"> </span><span class="ff1 fs0">即<span class="_ _12"></span>当由<span class="_ _0"></span>专<span class="_ _0"></span>家<span class="_ _0"></span>或<span class="_ _0"></span>决<span class="_ _12"></span>策者</span></div><div class="t m0 x3e h4 y2c ff2 fs1 fc0 sc0 ls0 ws0">(</div><div class="t m0 x28 h2 y2a ff1 fs0 fc0 sc0 ls0 ws0">统<span class="_ _0"></span>称<span class="_ _0"></span>为<span class="_ _0"></span>判</div><div class="t m0 x2 h2 y2d ff1 fs0 fc0 sc0 ls0 ws0">断者</div><div class="t m0 x39 h4 y2e ff2 fs1 fc0 sc0 ls0 ws0">)</div><div class="t m0 x3f h2 y2d ff1 fs0 fc0 sc0 ls0 ws0">构造出的判断矩阵不满足一致<span class="_ _8"></span>性要求<span class="ff2 fs1">,<span class="_"> </span></span>可依据一定的规则<span class="ff2 fs1">,<span class="_"> </span></span>由计算机自动调整判断矩阵</div><div class="t m0 x40 h4 y2e ff2 fs1 fc0 sc0 ls0 ws0">(</div><div class="t m0 x41 h2 y2d ff1 fs0 fc0 sc0 ls0 ws0">或由专业人</div><div class="t m0 x2 h2 y2f ff1 fs0 fc0 sc0 ls0 ws0">员计算</div><div class="t m0 x42 h4 y30 ff2 fs1 fc0 sc0 ls0 ws0">)</div><div class="t m0 xd h2 y2f ff2 fs1 fc0 sc0 ls0 ws0">,<span class="_"> </span><span class="ff1 fs0">直至满足一致性要求为止<span class="_ _1f"></span><span class="ff2 fs1">.<span class="_ _1e"> </span><span class="ff1 fs0">机械法的不足是<span class="_ _4"></span><span class="ff2 fs1">:<span class="_ _5"> </span><span class="ff1 fs0">调整过程中<span class="_ _0"></span>没有判断<span class="_ _0"></span>者参与<span class="_ _1c"></span><span class="ff2 fs1">;<span class="_ _5"> </span><span class="ff1 fs0">并且<span class="_ _0"></span>有的方<span class="_ _0"></span>法只有<span class="_ _0"></span>唯</span></span></span></span></span></span></span></div><div class="t m0 x2 h2 y31 ff1 fs0 fc0 sc0 ls0 ws0">一解<span class="ff2 fs1">,<span class="_ _1"> </span></span>有的方<span class="_ _0"></span>法得到<span class="_ _0"></span>的判断<span class="_ _0"></span>矩<span class="_ _0"></span>阵一<span class="_ _0"></span>般<span class="_ _0"></span>都带<span class="_ _0"></span>有<span class="_ _0"></span>小数<span class="_ _b"></span><span class="ff2 fs1">.<span class="_ _1e"> </span><span class="ff1 fs0">很显<span class="_ _0"></span>然</span>,<span class="_ _1"> </span><span class="ff1 fs0">带<span class="_ _0"></span>有小<span class="_ _0"></span>数<span class="_ _0"></span>的调<span class="_ _0"></span>整<span class="_ _0"></span>方案<span class="_ _0"></span>不<span class="_ _0"></span>符<span class="_ _0"></span>合判<span class="_ _0"></span>断<span class="_ _0"></span>者心<span class="_ _0"></span>理<span class="_ _0"></span>期望</span>,</span></div><div class="t m0 x2 h2 y32 ff1 fs0 fc0 sc0 ls0 ws0">尽管<span class="_ _0"></span>有<span class="_ _0"></span>多个<span class="_ _0"></span>解<span class="ff2 fs1">,<span class="_ _1"> </span></span>判<span class="_ _0"></span>断者<span class="_ _0"></span>也<span class="_ _0"></span>不愿<span class="_ _0"></span>意<span class="_ _0"></span>从中<span class="_ _0"></span>选<span class="_ _0"></span>择<span class="_ _1f"></span><span class="ff2 fs1">.<span class="_ _20"> </span><span class="ff1 fs0">对<span class="_ _0"></span>于只<span class="_ _0"></span>能<span class="_ _0"></span>得到<span class="_ _0"></span>唯<span class="_ _0"></span>一<span class="_ _0"></span>解的<span class="_ _0"></span>调<span class="_ _0"></span>整方<span class="_ _0"></span>法</span>,<span class="_ _1"> </span><span class="ff1 fs0">也<span class="_ _0"></span>不<span class="_ _0"></span>是<span class="_ _12"></span>很合<span class="_ _0"></span>理<span class="_ _b"></span><span class="ff2 fs1">.<span class="_ _1e"> </span><span class="ff1 fs0">这<span class="_ _0"></span>是<span class="_ _0"></span>因<span class="_ _0"></span>为<span class="_ _4"></span><span class="ff2 fs1">:</span></span></span></span></span></div><div class="t m0 x2 h2 y33 ff1 fs0 fc0 sc0 ls0 ws0">导致判断<span class="_ _0"></span>矩阵不<span class="_ _0"></span>一致的<span class="_ _0"></span>因素有时<span class="_ _0"></span>比较复<span class="_ _0"></span>杂<span class="ff2 fs1">,<span class="_ _a"> </span></span>比<span class="_ _0"></span>如<span class="ff2 fs1">,<span class="_ _1"> </span></span>它既可<span class="_ _0"></span>能是判<span class="_ _0"></span>断矩阵中<span class="_ _0"></span>某一<span class="_ _0"></span>元<span class="_ _0"></span>素<span class="_ _0"></span>取值<span class="_ _0"></span>过<span class="_ _0"></span>大造<span class="_ _0"></span>成<span class="_ _0"></span>的<span class="ff2 fs1">,<span class="_ _1"> </span></span>也<span class="_ _0"></span>有</div><div class="t m0 x2 h2 y34 ff1 fs0 fc0 sc0 ls0 ws0">可能是其它元素取值过<span class="_ _0"></span>小造成<span class="_ _0"></span>的<span class="_ _1f"></span><span class="ff2 fs1">.<span class="_ _20"> </span><span class="ff1 fs0">所谓主观<span class="_ _0"></span>法</span>,<span class="_ _1"> </span><span class="ff1 fs0">就是判断<span class="_ _0"></span>者在一<span class="_ _0"></span>定的规<span class="_ _0"></span>则提示下</span>,<span class="_ _1"> </span><span class="ff1 fs0">自<span class="_ _0"></span>行调整<span class="_ _0"></span>判断矩阵<span class="_ _b"></span><span class="ff2 fs1">.<span class="_ _1e"> </span><span class="ff1 fs0">不</span></span></span></span></div><div class="t m0 x2 h2 y35 ff1 fs0 fc0 sc0 ls0 ws0">过<span class="ff2 fs1">,<span class="_"> </span></span>在上述主观法</div><div class="t m0 x43 hf y36 ff2 fs9 fc0 sc0 ls0 ws0">[<span class="_ _12"></span>5<span class="_ _0"></span>,<span class="_"> </span>6<span class="_ _17"> </span>]</div><div class="t m0 x3 h2 y35 ff1 fs0 fc0 sc0 ls0 ws0">中<span class="ff2 fs1">,<span class="_"> </span></span>判断者实际上只能在规则的引导下<span class="ff2 fs1">,<span class="_ _1"> </span></span>被动<span class="_ _0"></span>地去选<span class="_ _0"></span>择由规<span class="_ _0"></span>则确定的<span class="_ _0"></span>某个元<span class="_ _0"></span>素<span class="_ _1f"></span><span class="ff2 fs1">.<span class="_ _20"> </span><span class="ff1 fs0">并且</span></span></div><div class="t m0 x2 h2 y37 ff1 fs0 fc0 sc0 ls0 ws0">一旦选定<span class="_ _0"></span>某个元<span class="_ _0"></span>素<span class="ff2 fs1">,<span class="_ _a"> </span></span>调<span class="_ _0"></span>整<span class="_ _0"></span>随意<span class="_ _0"></span>性<span class="_ _0"></span>很大<span class="ff2 fs1">,<span class="_ _5"> </span></span>这就<span class="_ _0"></span>导致<span class="_ _0"></span>得<span class="_ _0"></span>到的<span class="_ _0"></span>调<span class="_ _0"></span>整方<span class="_ _0"></span>案<span class="_ _0"></span>往<span class="_ _0"></span>往更<span class="_ _0"></span>不<span class="_ _0"></span>合理<span class="_ _b"></span><span class="ff2 fs1">.<span class="_ _1e"> </span><span class="ff1 fs0">比如<span class="_ _0"></span>文<span class="_ _0"></span>献<span class="_ _17"></span></span>[<span class="_ _11"></span>5,<span class="_ _1"> </span>6<span class="_ _11"> </span>]<span class="_ _17"></span><span class="ff1 fs0">中给<span class="_ _0"></span>出的</span></span></div><div class="t m0 x2 h2 y38 ff1 fs0 fc0 sc0 ls0 ws0">调整方案<span class="ff2 fs1">,<span class="_ _1"> </span></span>判断<span class="_ _0"></span>矩阵中<span class="_ _0"></span>的某些<span class="_ _0"></span>元素值调<span class="_ _0"></span>整后与<span class="_ _0"></span>调整前<span class="_ _0"></span>相差太<span class="_ _0"></span>大<span class="ff2 fs1">,<span class="_ _a"> </span></span>从<span class="_ _0"></span>根本上<span class="_ _0"></span>已经<span class="_ _0"></span>违<span class="_ _0"></span>背了<span class="_ _0"></span>判<span class="_ _0"></span>断者<span class="_ _0"></span>的<span class="_ _0"></span>最初<span class="_ _0"></span>意<span class="_ _0"></span>愿<span class="_ _1f"></span><span class="ff2 fs1">.</span></div><div class="t m0 x2 h2 y39 ff1 fs0 fc0 sc0 ls0 ws0">此外<span class="ff2 fs1">,<span class="_"> </span></span>通过研究还发现<span class="ff2 fs1">,<span class="_ _a"> </span></span>对不满足一致性要求的判断矩阵<span class="ff2 fs1">,<span class="_"> </span></span>用不同的方法求解<span class="ff2 fs1">,<span class="_"> </span></span>虽说最后都能得到满足一致</div><div class="t m0 x2 h2 y3a ff1 fs0 fc0 sc0 ls0 ws0">性要求的调整方案<span class="ff2 fs1">,<span class="_"> </span></span>但是<span class="ff2 fs1">,<span class="_"> </span></span>不同的方法所得到的调整方案是不同的<span class="_ _b"></span><span class="ff2 fs1">.<span class="_ _16"> </span><span class="ff1 fs0">不<span class="_ _0"></span>过</span>,<span class="_ _1"> </span><span class="ff1 fs0">这一点<span class="_ _0"></span>也给我<span class="_ _0"></span>们一个启<span class="_ _0"></span>示<span class="_ _4"></span><span class="ff2 fs1">:<span class="_ _14"> </span><span class="ff1 fs0">即对</span></span></span></span></div><div class="t m0 x44 h10 y3b ff6 fs6 fc1 sc0 ls0 ws0">© 1995-2005 Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved.</div></div><div class="pi" data-data='{"ctm":[1.733078,0.000000,0.000000,1.733078,0.000000,0.000000]}'></div></div><div id="pf2" class="pf w0 h0" data-page-no="2"><div class="pc pc2 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src="/image.php?url=https://csdnimg.cn/release/download_crawler_static/89707154/bg2.jpg"><div class="t m0 x2 h2 y2 ff1 fs0 fc0 sc0 ls0 ws0">不满足一致性要求的判断矩阵<span class="_ _1c"></span><span class="ff2 fs1">,<span class="_ _1"> </span><span class="ff1 fs0">确实存在多个调整方案<span class="_ _0"></span>—<span class="_ _6"></span>—<span class="_ _12"></span>使调整后的判断矩阵满足一致性要求<span class="_ _1f"></span><span class="ff2 fs1">.</span></span></span></div><div class="t m0 x39 h2 y3c ff1 fs0 fc0 sc0 ls0 ws0">根据以上分析<span class="ff2 fs1">,<span class="_"> </span></span>作者认为<span class="_ _4"></span><span class="ff2 fs1">:<span class="_ _5"> </span><span class="ff1 fs0">一种合理的调整方法</span>,<span class="_"> </span><span class="ff1 fs0">应当让判断<span class="_ _0"></span>者参与判<span class="_ _0"></span>断矩阵<span class="_ _0"></span>的调整<span class="_ _b"></span><span class="ff2 fs1">.<span class="_ _1e"> </span><span class="ff1 fs0">这是因为</span>,<span class="_ _1"> </span><span class="ff1 fs0">最初</span></span></span></span></div><div class="t m0 x2 h2 y3d ff1 fs0 fc0 sc0 ls0 ws0">的判断矩<span class="_ _0"></span>阵是由<span class="_ _0"></span>判断者<span class="_ _0"></span>构造<span class="_ _0"></span>出<span class="_ _0"></span>来的<span class="ff2 fs1">,<span class="_ _1"> </span></span>因<span class="_ _0"></span>此<span class="ff2 fs1">,<span class="_ _1"> </span></span>对<span class="_ _0"></span>判<span class="_ _0"></span>断矩<span class="_ _0"></span>阵<span class="_ _0"></span>的调<span class="_ _0"></span>整<span class="_ _0"></span>也<span class="_ _0"></span>应该<span class="_ _0"></span>尊<span class="_ _0"></span>重他<span class="_ _0"></span>们<span class="_ _0"></span>的意<span class="_ _0"></span>愿<span class="_ _21"></span><span class="ff2 fs1">.<span class="_ _1e"> </span><span class="ff1 fs0">此<span class="_ _0"></span>外</span>,<span class="_ _1"> </span><span class="ff1 fs0">一<span class="_ _0"></span>种<span class="_ _0"></span>合理<span class="_ _0"></span>的</span></span></div><div class="t m0 x2 h2 y3e ff1 fs0 fc0 sc0 ls0 ws0">调整方法<span class="ff2 fs1">,<span class="_ _1"> </span></span>还应<span class="_ _0"></span>该能产<span class="_ _0"></span>生多个<span class="_ _0"></span>满足一致<span class="_ _0"></span>性要求<span class="_ _0"></span>的方案<span class="ff2 fs1">,<span class="_ _1"> </span></span>以便<span class="_ _0"></span>让判断<span class="_ _0"></span>者能够<span class="_ _0"></span>进行<span class="_ _0"></span>比<span class="_ _0"></span>较<span class="ff2 fs1">,<span class="_ _1"> </span></span>并从<span class="_ _0"></span>中<span class="_ _0"></span>选择<span class="_ _0"></span>他<span class="_ _0"></span>们<span class="_ _0"></span>认为</div><div class="t m0 x2 h2 y3f ff1 fs0 fc0 sc0 ls0 ws0">最满意的方案<span class="_ _1f"></span><span class="ff2 fs1">.<span class="_ _1e"> </span><span class="ff1 fs0">基于以上思考</span>,<span class="_"> </span><span class="ff1 fs0">本文将设计出一种能满足以上两点要求的<span class="_ _8"></span>交互式的算法<span class="_ _1f"></span><span class="ff2 fs1">.</span></span></span></div><div class="t m0 x2 he y40 ff5 fs7 fc0 sc0 ls0 ws0">2<span class="_ _0"></span><span class="ff3 fs8"> 判断矩阵调整<span class="_ _0"></span>的新方法</span></div><div class="t m0 x39 h2 y41 ff1 fs0 fc0 sc0 ls0 ws0">在给出新的调整方法之前<span class="ff2 fs1">,<span class="_"> </span></span>我们先研究一下具有完全一致<span class="_ _8"></span>性的判断矩阵的一些特性<span class="_ _1f"></span><span class="ff2 fs1">.</span></div><div class="t m0 x2 h3 y42 ff5 fs1 fc0 sc0 ls0 ws0">2<span class="ff4 fs0">1</span>1<span class="_ _0"></span><span class="ff3 fs0"> 具有完全一致性判断矩阵的特性</span></div><div class="t m0 x39 h2 y43 ff1 fs0 fc0 sc0 ls0 ws0">假定有一组被比较<span class="_ _0"></span>对<span class="_ _0"></span>象<span class="_ _4"></span><span class="ff2 fs1">:<span class="_ _1b"> </span><span class="ff7 fsa">A</span></span></div><div class="t m0 x45 hf y44 ff2 fs9 fc0 sc0 ls0 ws0">1</div><div class="t m0 xa h4 y43 ff2 fs1 fc0 sc0 ls0 ws0">,<span class="_ _17"></span><span class="ff7 fsa">A</span></div><div class="t m0 x46 hf y44 ff2 fs9 fc0 sc0 ls0 ws0">2</div><div class="t m0 x47 h4 y43 ff2 fs1 fc0 sc0 ls0 ws0">,<span class="_ _17"></span><span class="ff7 fsa">A</span></div><div class="t m0 x48 hf y44 ff2 fs9 fc0 sc0 ls0 ws0">3</div><div class="t m0 x1a h2 y43 ff2 fs1 fc0 sc0 ls0 ws0">,<span class="_"> </span><span class="ff1 fs0">…</span>,<span class="_ _11"></span><span class="ff7 fsa">A</span></div><div class="t m0 x49 h11 y44 ff7 fsb fc0 sc0 ls0 ws0">n</div><div class="t m0 x2f h2 y43 ff2 fs1 fc0 sc0 ls0 ws0">,<span class="_ _5"> </span><span class="ff1 fs0">它们<span class="_ _0"></span>的权<span class="_ _0"></span>重<span class="_ _0"></span>分别<span class="_ _0"></span>为<span class="_ _4"></span><span class="ff2 fs1">:<span class="_ _17"></span><span class="ff7 fsa">W</span></span></span></div><div class="t m0 x4a hf y44 ff2 fs9 fc0 sc0 ls0 ws0">1</div><div class="t m0 x4b h4 y43 ff2 fs1 fc0 sc0 ls0 ws0">,<span class="_ _0"></span><span class="ff7 fsa">W</span></div><div class="t m0 x4c hf y44 ff2 fs9 fc0 sc0 ls0 ws0">2</div><div class="t m0 x4d h4 y43 ff2 fs1 fc0 sc0 ls0 ws0">,<span class="_ _0"></span><span class="ff7 fsa">W</span></div><div class="t m0 x4e hf y44 ff2 fs9 fc0 sc0 ls0 ws0">3</div><div class="t m0 x4f h2 y43 ff2 fs1 fc0 sc0 ls0 ws0">,<span class="_"> </span><span class="ff1 fs0">…</span>,<span class="_ _12"></span><span class="ff7 fsa">W</span></div><div class="t m0 x50 h11 y44 ff7 fsb fc0 sc0 ls0 ws0">n</div><div class="t m0 x51 h2 y43 ff2 fs1 fc0 sc0 ls0 ws0">,<span class="_ _5"> </span><span class="ff1 fs0">构造<span class="_ _0"></span>判断<span class="_ _0"></span>矩<span class="_ _0"></span>阵<span class="_ _11"></span><span class="ff7 fsa">A</span></span></div><div class="t m0 x2 h2 y45 ff1 fs0 fc0 sc0 ls0 ws0">如下<span class="_ _4"></span><span class="ff2 fs1">:<span class="_ _15"> </span><span class="ff7 fsa">A<span class="_ _13"> </span></span>=</span></div><div class="t m0 x52 h4 y46 ff2 fs1 fc0 sc0 ls0 ws0">(</div><div class="t m0 x53 h12 y45 ff7 fsa fc0 sc0 ls0 ws0">a</div><div class="t m0 x54 h11 y47 ff7 fsb fc0 sc0 ls0 ws0">i<span class="_ _0"></span>j</div><div class="t m0 x55 h4 y46 ff2 fs1 fc0 sc0 ls0 ws0">)</div><div class="t m0 x56 h13 y47 ff7 fsb fc0 sc0 ls0 ws0">n<span class="_ _0"></span><span class="ff1 fsc">×</span>n</div><div class="t m0 x57 h4 y45 ff2 fs1 fc0 sc0 ls0 ws0">=</div><div class="t m0 x58 h4 y46 ff2 fs1 fc0 sc0 ls0 ws0">(</div><div class="t m0 xf h12 y45 ff7 fsa fc0 sc0 ls0 ws0">w</div><div class="t m0 x59 h11 y47 ff7 fsb fc0 sc0 ls0 ws0">i</div><div class="t m0 x5a h14 y45 ff8 fs0 fc0 sc0 ls0 ws0"><span class="_ _22"></span><span class="ff7 fsa">w</span></div><div class="t m0 x5b h11 y47 ff7 fsb fc0 sc0 ls0 ws0">j</div><div class="t m0 x5c h4 y46 ff2 fs1 fc0 sc0 ls0 ws0">)</div><div class="t m0 x34 h13 y47 ff7 fsb fc0 sc0 ls0 ws0">n<span class="_ _0"></span><span class="ff1 fsc">×</span>n</div><div class="t m0 x13 h2 y45 ff2 fs1 fc0 sc0 ls0 ws0">,<span class="_ _e"> </span><span class="ff1 fs0">也即<span class="_ _4"></span><span class="ff2 fs1">:</span></span></div><div class="t m0 x5d h4 y48 ff7 fsa fc0 sc0 ls0 ws0">A<span class="_ _13"> </span><span class="ff2 fs1">=</span></div><div class="t m0 x5e h12 y49 ff7 fsa fc0 sc0 ls0 ws0">W</div><div class="t m0 x5f hf y4a ff2 fs9 fc0 sc0 ls0 ws0">1</div><div class="t m0 x35 h14 y49 ff8 fs0 fc0 sc0 ls0 ws0"><span class="_ _23"></span><span class="ff7 fsa">W</span></div><div class="t m0 x60 hf y4a ff2 fs9 fc0 sc0 ls0 ws0">1</div><div class="t m0 x61 h12 y49 ff7 fsa fc0 sc0 ls0 ws0">W</div><div class="t m0 x62 hf y4a ff2 fs9 fc0 sc0 ls0 ws0">1</div><div class="t m0 x63 h14 y49 ff8 fs0 fc0 sc0 ls0 ws0"><span class="_ _23"></span><span class="ff7 fsa">W</span></div><div class="t m0 x64 hf y4a ff2 fs9 fc0 sc0 ls0 ws0">2</div><div class="t m0 x65 h12 y49 ff7 fsa fc0 sc0 ls0 ws0">W</div><div class="t m0 x11 hf y4a ff2 fs9 fc0 sc0 ls0 ws0">1</div><div class="t m0 x66 h14 y49 ff8 fs0 fc0 sc0 ls0 ws0"><span class="_ _23"></span><span class="ff7 fsa">W</span></div><div class="t m0 x67 hf y4a ff2 fs9 fc0 sc0 ls0 ws0">3</div><div class="t m0 x68 h2 y49 ff1 fs0 fc0 sc0 ls0 ws0">…<span class="_ _1e"> </span><span class="ff7 fsa">W</span></div><div class="t m0 x69 hf y4a ff2 fs9 fc0 sc0 ls0 ws0">1</div><div class="t m0 x6a h14 y49 ff8 fs0 fc0 sc0 ls0 ws0"><span class="_ _23"></span><span class="ff7 fsa">W</span></div><div class="t m0 x6b h11 y4a ff7 fsb fc0 sc0 ls0 ws0">n</div><div class="t m0 x5e h12 y4b ff7 fsa fc0 sc0 ls0 ws0">W</div><div class="t m0 x5f hf y4c ff2 fs9 fc0 sc0 ls0 ws0">2</div><div class="t m0 x35 h14 y4b ff8 fs0 fc0 sc0 ls0 ws0"><span class="_ _23"></span><span class="ff7 fsa">W</span></div><div class="t m0 x60 hf y4c ff2 fs9 fc0 sc0 ls0 ws0">1</div><div class="t m0 x61 h12 y4b ff7 fsa fc0 sc0 ls0 ws0">W</div><div class="t m0 x62 hf y4c ff2 fs9 fc0 sc0 ls0 ws0">2</div><div class="t m0 x63 h14 y4b ff8 fs0 fc0 sc0 ls0 ws0"><span class="_ _23"></span><span class="ff7 fsa">W</span></div><div class="t m0 x64 hf y4c ff2 fs9 fc0 sc0 ls0 ws0">2</div><div class="t m0 x65 h12 y4b ff7 fsa fc0 sc0 ls0 ws0">W</div><div class="t m0 x11 hf y4c ff2 fs9 fc0 sc0 ls0 ws0">2</div><div class="t m0 x66 h14 y4b ff8 fs0 fc0 sc0 ls0 ws0"><span class="_ _23"></span><span class="ff7 fsa">W</span></div><div class="t m0 x67 hf y4c ff2 fs9 fc0 sc0 ls0 ws0">3</div><div class="t m0 x68 h2 y4b ff1 fs0 fc0 sc0 ls0 ws0">…<span class="_ _1e"> </span><span class="ff7 fsa">W</span></div><div class="t m0 x69 hf y4c ff2 fs9 fc0 sc0 ls0 ws0">2</div><div class="t m0 x6a h14 y4b ff8 fs0 fc0 sc0 ls0 ws0"><span class="_ _23"></span><span class="ff7 fsa">W</span></div><div class="t m0 x6b h11 y4c ff7 fsb fc0 sc0 ls0 ws0">n</div><div class="t m0 x5e h12 y48 ff7 fsa fc0 sc0 ls0 ws0">W</div><div class="t m0 x5f hf y4d ff2 fs9 fc0 sc0 ls0 ws0">3</div><div class="t m0 x35 h14 y48 ff8 fs0 fc0 sc0 ls0 ws0"><span class="_ _23"></span><span class="ff7 fsa">W</span></div><div class="t m0 x60 hf y4d ff2 fs9 fc0 sc0 ls0 ws0">1</div><div class="t m0 x61 h12 y48 ff7 fsa fc0 sc0 ls0 ws0">W</div><div class="t m0 x62 hf y4d ff2 fs9 fc0 sc0 ls0 ws0">3</div><div class="t m0 x63 h14 y48 ff8 fs0 fc0 sc0 ls0 ws0"><span class="_ _23"></span><span class="ff7 fsa">W</span></div><div class="t m0 x64 hf y4d ff2 fs9 fc0 sc0 ls0 ws0">2</div><div class="t m0 x65 h12 y48 ff7 fsa fc0 sc0 ls0 ws0">W</div><div class="t m0 x11 hf y4d ff2 fs9 fc0 sc0 ls0 ws0">3</div><div class="t m0 x66 h14 y48 ff8 fs0 fc0 sc0 ls0 ws0"><span class="_ _23"></span><span class="ff7 fsa">W</span></div><div class="t m0 x67 hf y4d ff2 fs9 fc0 sc0 ls0 ws0">3</div><div class="t m0 x68 h2 y48 ff1 fs0 fc0 sc0 ls0 ws0">…<span class="_ _1e"> </span><span class="ff7 fsa">W</span></div><div class="t m0 x69 hf y4d ff2 fs9 fc0 sc0 ls0 ws0">3</div><div class="t m0 x6a h14 y48 ff8 fs0 fc0 sc0 ls0 ws0"><span class="_ _23"></span><span class="ff7 fsa">W</span></div><div class="t m0 x6b h11 y4d ff7 fsb fc0 sc0 ls0 ws0">n</div><div class="t m0 x68 h14 y4e ff8 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 x5e h12 y4f ff7 fsa fc0 sc0 ls0 ws0">W</div><div class="t m0 x5f h11 y50 ff7 fsb fc0 sc0 ls0 ws0">n</div><div class="t m0 x35 h14 y4f ff8 fs0 fc0 sc0 ls0 ws0"><span class="_ _23"></span><span class="ff7 fsa">W</span></div><div class="t m0 x60 hf y50 ff2 fs9 fc0 sc0 ls0 ws0">1</div><div class="t m0 x61 h12 y4f ff7 fsa fc0 sc0 ls0 ws0">W</div><div class="t m0 x62 h11 y50 ff7 fsb fc0 sc0 ls0 ws0">n</div><div class="t m0 x63 h14 y4f ff8 fs0 fc0 sc0 ls0 ws0"><span class="_ _23"></span><span class="ff7 fsa">W</span></div><div class="t m0 x64 hf y50 ff2 fs9 fc0 sc0 ls0 ws0">2</div><div class="t m0 x65 h12 y4f ff7 fsa fc0 sc0 ls0 ws0">W</div><div class="t m0 x11 h11 y50 ff7 fsb fc0 sc0 ls0 ws0">n</div><div class="t m0 x66 h14 y4f ff8 fs0 fc0 sc0 ls0 ws0"><span class="_ _23"></span><span class="ff7 fsa">W</span></div><div class="t m0 x67 hf y50 ff2 fs9 fc0 sc0 ls0 ws0">3</div><div class="t m0 x68 h2 y4f ff1 fs0 fc0 sc0 ls0 ws0">…<span class="_ _1e"> </span><span class="ff7 fsa">W</span></div><div class="t m0 x69 h11 y50 ff7 fsb fc0 sc0 ls0 ws0">n</div><div class="t m0 x6a h14 y4f ff8 fs0 fc0 sc0 ls0 ws0"><span class="_ _23"></span><span class="ff7 fsa">W</span></div><div class="t m0 x6b h11 y50 ff7 fsb fc0 sc0 ls0 ws0">n</div><div class="t m0 x2 h2 y51 ff1 fs0 fc0 sc0 ls0 ws0">  矩<span class="_ _1c"></span>阵<span class="ff7 fsa">A<span class="_ _1a"> </span></span>各<span class="_ _4"></span>列<span class="_ _1c"></span>的<span class="_ _1c"></span>含<span class="_ _4"></span>义<span class="_ _1c"></span>是<span class="_ _6"></span><span class="ff2 fs1">:<span class="_ _5"> </span><span class="ff1 fs0">第<span class="_ _1c"></span>一<span class="_ _4"></span>列<span class="_ _1c"></span>表<span class="_ _1c"></span>示<span class="_ _1c"></span>以<span class="_ _4"></span><span class="ff7 fsa">A</span></span></span></div><div class="t m0 x6c hf y52 ff2 fs9 fc0 sc0 ls0 ws0">1</div><div class="t m0 x14 h2 y51 ff1 fs0 fc0 sc0 ls0 ws0">为<span class="_ _4"></span>基<span class="_ _1c"></span>准<span class="_ _1c"></span><span class="ff2 fs1">,<span class="_ _a"> </span><span class="ff1 fs0">所<span class="_ _1c"></span>有<span class="_ _1c"></span>的<span class="_ _1c"></span>被<span class="_ _4"></span>比<span class="_ _1c"></span>较<span class="_ _1c"></span>对<span class="_ _1c"></span>象<span class="_ _4"></span>与<span class="_ _1c"></span><span class="ff7 fsa">A</span></span></span></div><div class="t m0 xc hf y52 ff2 fs9 fc0 sc0 ls0 ws0">1</div><div class="t m0 x6d h2 y51 ff1 fs0 fc0 sc0 ls0 ws0">的<span class="_ _4"></span>重<span class="_ _1c"></span>要<span class="_ _1c"></span>性<span class="_ _1c"></span>之<span class="_ _4"></span>比<span class="_ _1c"></span>所<span class="_ _1c"></span>构<span class="_ _1c"></span>成<span class="_ _4"></span>的<span class="_ _1c"></span>列<span class="_ _1c"></span>向<span class="_ _1c"></span>量<span class="_ _6"></span><span class="ff2 fs1">;<span class="_ _5"> </span><span class="ff1 fs0">第</span></span></div><div class="t m0 x2 h2 y53 ff1 fs0 fc0 sc0 ls0 ws0">二列<span class="_ _1c"></span>表<span class="_ _4"></span>示<span class="_ _1c"></span>以<span class="ff7 fsa">A</span></div><div class="t m0 x6e hf y54 ff2 fs9 fc0 sc0 ls0 ws0">2</div><div class="t m0 x55 h2 y53 ff1 fs0 fc0 sc0 ls0 ws0">为<span class="_ _4"></span>基<span class="_ _1c"></span>准<span class="_ _1c"></span><span class="ff2 fs1">,<span class="_ _a"> </span><span class="ff1 fs0">所<span class="_ _1c"></span>有<span class="_ _1c"></span>的<span class="_ _1c"></span>被<span class="_ _4"></span>比<span class="_ _1c"></span>较<span class="_ _1c"></span>对<span class="_ _1c"></span>象<span class="_ _4"></span>与<span class="ff7 fsa">A</span></span></span></div><div class="t m0 x6f hf y54 ff2 fs9 fc0 sc0 ls0 ws0">2</div><div class="t m0 x70 h2 y53 ff1 fs0 fc0 sc0 ls0 ws0">的<span class="_ _4"></span>重<span class="_ _1c"></span>要<span class="_ _1c"></span>性<span class="_ _1c"></span>之<span class="_ _4"></span>比<span class="_ _1c"></span>所<span class="_ _1c"></span>构<span class="_ _1c"></span>成<span class="_ _4"></span>的<span class="_ _1c"></span>列<span class="_ _1c"></span>向<span class="_ _1c"></span>量<span class="_ _1c"></span><span class="ff2 fs1">,<span class="_"> </span><span class="ff1 fs0">…</span>,<span class="_ _1"> </span><span class="ff1 fs0">第<span class="_ _17"></span><span class="ff7 fsa">n<span class="_ _a"> </span></span>列<span class="_ _1c"></span>表<span class="_ _1c"></span>示<span class="_ _1c"></span>以<span class="ff7 fsa">A</span></span></span></div><div class="t m0 x71 h11 y54 ff7 fsb fc0 sc0 ls0 ws0">n</div><div class="t m0 x72 h2 y53 ff1 fs0 fc0 sc0 ls0 ws0">为<span class="_ _4"></span>基<span class="_ _1c"></span>准<span class="_ _1c"></span><span class="ff2 fs1">,<span class="_ _a"> </span><span class="ff1 fs0">所</span></span></div><div class="t m0 x2 h2 y55 ff1 fs0 fc0 sc0 ls0 ws0">有<span class="_ _4"></span>的<span class="_ _1c"></span>被<span class="_ _1c"></span>比<span class="_ _1c"></span>对<span class="_ _4"></span>象<span class="_ _1c"></span>与<span class="_ _12"></span><span class="ff7 fsa">A</span></div><div class="t m0 x73 h11 y19 ff7 fsb fc0 sc0 ls0 ws0">n</div><div class="t m0 x74 h2 y55 ff1 fs0 fc0 sc0 ls0 ws0">的<span class="_ _4"></span>重<span class="_ _1c"></span>要<span class="_ _1c"></span>性<span class="_ _1c"></span>之<span class="_ _4"></span>比<span class="_ _1c"></span>所<span class="_ _1c"></span>构<span class="_ _1c"></span>成<span class="_ _4"></span>的<span class="_ _1c"></span>列<span class="_ _1c"></span>向<span class="_ _1c"></span>量<span class="_ _24"></span><span class="ff2 fs1">.<span class="_ _1e"> </span><span class="ff1 fs0">显<span class="_ _4"></span>然<span class="_ _1c"></span><span class="ff2 fs1">,<span class="_ _1"> </span><span class="ff1 fs0">判<span class="_ _4"></span>断<span class="_ _1c"></span>矩<span class="_ _1c"></span>阵<span class="_ _12"></span><span class="ff7 fsa">A<span class="_ _13"> </span></span>具<span class="_ _1c"></span>有<span class="_ _4"></span>完<span class="_ _1c"></span>全<span class="_ _1c"></span>一<span class="_ _1c"></span>致<span class="_ _4"></span>性<span class="_ _1c"></span><span class="ff2 fs1">,<span class="_ _1"> </span><span class="ff1 fs0">即<span class="_ _1c"></span>对<span class="_ _1c"></span>于<span class="_ _1c"></span>任<span class="_ _1c"></span>意<span class="_ _8"></span>的<span class="_ _18"> </span><span class="ff7 fsa">k<span class="_ _17"></span><span class="ff2 fs1">,<span class="_ _c"> </span></span></span>都<span class="_ _1c"></span>有</span></span></span></span></span></span></div><div class="t m0 x2 h12 y56 ff7 fsa fc0 sc0 ls0 ws0">a</div><div class="t m0 x1 h11 y57 ff7 fsb fc0 sc0 ls0 ws0">i<span class="_ _0"></span>j</div><div class="t m0 x75 h4 y56 ff2 fs1 fc0 sc0 ls0 ws0">=<span class="_ _c"> </span><span class="ff7 fsa">a</span></div><div class="t m0 x76 h11 y57 ff7 fsb fc0 sc0 ls0 ws0">ik</div><div class="t m0 x77 h2 y56 ff1 fs0 fc0 sc0 ls0 ws0">×<span class="_ _15"> </span><span class="ff7 fsa">a</span></div><div class="t m0 x78 h11 y57 ff7 fsb fc0 sc0 ls0 ws0">k<span class="_ _12"></span>j</div><div class="t m0 x79 h3 y56 ff2 fs1 fc0 sc0 ls0 ws0">,<span class="_ _c"> </span><span class="ff7 fsa">i<span class="_ _0"></span></span>,<span class="_"> </span><span class="ff7 fsa">k<span class="_ _11"></span></span>,<span class="_ _5"> </span><span class="ff7 fsa">j<span class="_ _10"> </span><span class="ff4 fs0">Φ<span class="_ _10"> </span></span>n<span class="_ _17"></span></span>,<span class="_ _13"> </span><span class="ff1 fs0">并<span class="_ _1c"></span>且<span class="_ _1c"></span>用<span class="_ _4"></span>特<span class="_ _1c"></span>征<span class="_ _1c"></span>根<span class="_ _1c"></span>法<span class="_ _4"></span>或<span class="_ _25"></span>“<span class="_ _6"></span>和<span class="_ _4"></span>积<span class="_ _1c"></span>法<span class="_ _1c"></span>”<span class="_ _24"></span>求<span class="_ _1c"></span>得<span class="_ _4"></span>的<span class="_ _1c"></span>权<span class="_ _1c"></span>重<span class="_ _1c"></span>就<span class="_ _4"></span>是<span class="ff7 fsa">W</span></span></div><div class="t m0 x7a hf y57 ff2 fs9 fc0 sc0 ls0 ws0">1</div><div class="t m0 x7b h4 y56 ff2 fs1 fc0 sc0 ls0 ws0">,<span class="_ _0"></span><span class="ff7 fsa">W</span></div><div class="t m0 x31 hf y57 ff2 fs9 fc0 sc0 ls0 ws0">2</div><div class="t m0 x7c h4 y56 ff2 fs1 fc0 sc0 ls0 ws0">,<span class="_ _0"></span><span class="ff7 fsa">W</span></div><div class="t m0 x1e hf y57 ff2 fs9 fc0 sc0 ls0 ws0">3</div><div class="t m0 x7d h2 y56 ff2 fs1 fc0 sc0 ls0 ws0">,<span class="_"> </span><span class="ff1 fs0">…</span>,<span class="_ _12"></span><span class="ff7 fsa">W</span></div><div class="t m0 x7e h11 y57 ff7 fsb fc0 sc0 ls0 ws0">n</div><div class="t m0 x23 h4 y56 ff2 fs1 fc0 sc0 ls0 ws0">.</div><div class="t m0 x39 h2 y58 ff1 fs0 fc0 sc0 ls0 ws0">现对判断矩阵</div><div class="t m0 x57 h4 y59 ff2 fs1 fc0 sc0 ls0 ws0">A</div><div class="t m0 x7 h2 y58 ff1 fs0 fc0 sc0 ls0 ws0">的每一列作归一化处理<span class="ff2 fs1">,<span class="_"> </span></span>得矩阵<span class="_ _17"></span><span class="ff7 fsa">A<span class="_ _14"> </span></span>′<span class="_ _25"></span>为<span class="_ _4"></span><span class="ff2 fs1">:</span></div><div class="t m0 x47 h2 y5a ff7 fsa fc0 sc0 ls0 ws0">A<span class="_ _14"> </span><span class="ff1 fs0">′<span class="_ _25"></span><span class="ff2 fs1">=</span></span></div><div class="t m0 x7f h12 y5b ff7 fsa fc0 sc0 ls0 ws0">W</div><div class="t m0 x80 hf y5c ff2 fs9 fc0 sc0 ls0 ws0">1</div><div class="t m0 x9 h12 y5b ff7 fsa fc0 sc0 ls0 ws0">W</div><div class="t m0 x81 hf y5c ff2 fs9 fc0 sc0 ls0 ws0">1</div><div class="t m0 x82 h12 y5b ff7 fsa fc0 sc0 ls0 ws0">W</div><div class="t m0 x15 hf y5c ff2 fs9 fc0 sc0 ls0 ws0">1</div><div class="t m0 x83 h2 y5b ff1 fs0 fc0 sc0 ls0 ws0">…<span class="_ _1e"> </span><span class="ff7 fsa">W</span></div><div class="t m0 x84 hf y5c ff2 fs9 fc0 sc0 ls0 ws0">1</div><div class="t m0 x7f h12 y5d ff7 fsa fc0 sc0 ls0 ws0">W</div><div class="t m0 x80 hf y5e ff2 fs9 fc0 sc0 ls0 ws0">2</div><div class="t m0 x9 h12 y5d ff7 fsa fc0 sc0 ls0 ws0">W</div><div class="t m0 x81 hf y5e ff2 fs9 fc0 sc0 ls0 ws0">2</div><div class="t m0 x82 h12 y5d ff7 fsa fc0 sc0 ls0 ws0">W</div><div class="t m0 x15 hf y5e ff2 fs9 fc0 sc0 ls0 ws0">2</div><div class="t m0 x83 h2 y5d ff1 fs0 fc0 sc0 ls0 ws0">…<span class="_ _1e"> </span><span class="ff7 fsa">W</span></div><div class="t m0 x84 hf y5e ff2 fs9 fc0 sc0 ls0 ws0">2</div><div class="t m0 x7f h12 y5a ff7 fsa fc0 sc0 ls0 ws0">W</div><div class="t m0 x80 hf y5f ff2 fs9 fc0 sc0 ls0 ws0">3</div><div class="t m0 x9 h12 y5a ff7 fsa fc0 sc0 ls0 ws0">W</div><div class="t m0 x81 hf y5f ff2 fs9 fc0 sc0 ls0 ws0">3</div><div class="t m0 x82 h12 y5a ff7 fsa fc0 sc0 ls0 ws0">W</div><div class="t m0 x15 hf y5f ff2 fs9 fc0 sc0 ls0 ws0">3</div><div class="t m0 x83 h2 y5a ff1 fs0 fc0 sc0 ls0 ws0">…<span class="_ _1e"> </span><span class="ff7 fsa">W</span></div><div class="t m0 x84 hf y5f ff2 fs9 fc0 sc0 ls0 ws0">3</div><div class="t m0 x83 h14 y60 ff8 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 x7f h12 y61 ff7 fsa fc0 sc0 ls0 ws0">W</div><div class="t m0 x80 h11 y62 ff7 fsb fc0 sc0 ls0 ws0">n</div><div class="t m0 x9 h12 y61 ff7 fsa fc0 sc0 ls0 ws0">W</div><div class="t m0 x81 h11 y62 ff7 fsb fc0 sc0 ls0 ws0">n</div><div class="t m0 x82 h12 y61 ff7 fsa fc0 sc0 ls0 ws0">W</div><div class="t m0 x15 h11 y62 ff7 fsb fc0 sc0 ls0 ws0">n</div><div class="t m0 x83 h2 y61 ff1 fs0 fc0 sc0 ls0 ws0">…<span class="_ _1e"> </span><span class="ff7 fsa">W</span></div><div class="t m0 x84 h11 y62 ff7 fsb fc0 sc0 ls0 ws0">n</div><div class="t m0 x2 h2 y63 ff1 fs0 fc0 sc0 ls0 ws0"> <span class="_ _0"></span> 矩阵<span class="_ _0"></span><span class="ff7 fsa">A<span class="_ _14"> </span></span>′<span class="_ _26"></span>的含义是<span class="_ _4"></span><span class="ff2 fs1">:<span class="_ _5"> </span><span class="ff1 fs0">分别以<span class="_ _0"></span><span class="ff7 fsa">A</span></span></span></div><div class="t m0 xa h11 y64 ff7 fsb fc0 sc0 ls0 ws0">j</div><div class="t m0 x85 h4 y65 ff2 fs1 fc0 sc0 ls0 ws0">(</div><div class="t m0 x86 h12 y66 ff7 fsa fc0 sc0 ls0 ws0">j</div><div class="t m0 x87 h2 y63 ff2 fs1 fc0 sc0 ls0 ws0">=<span class="_ _c"> </span>1,<span class="_ _a"> </span>2<span class="_ _0"></span>,<span class="_ _1"> </span><span class="ff1 fs0">…</span>,<span class="_"> </span><span class="ff7 fsa">n</span></div><div class="t m0 x88 h4 y65 ff2 fs1 fc0 sc0 ls0 ws0">)</div><div class="t m0 x2b h2 y66 ff1 fs0 fc0 sc0 ls0 ws0">为基准<span class="ff2 fs1">,<span class="_"> </span></span>然后用<span class="ff7 fsa">A</span></div><div class="t m0 x89 hf y64 ff2 fs9 fc0 sc0 ls0 ws0">1</div><div class="t m0 x8a h4 y63 ff2 fs1 fc0 sc0 ls0 ws0">,<span class="_ _17"></span><span class="ff7 fsa">A</span></div><div class="t m0 x8b hf y64 ff2 fs9 fc0 sc0 ls0 ws0">2</div><div class="t m0 x8c h2 y63 ff2 fs1 fc0 sc0 ls0 ws0">,<span class="_"> </span><span class="ff1 fs0">…</span>,<span class="_ _11"></span><span class="ff7 fsa">A</span></div><div class="t m0 x8d h11 y64 ff7 fsb fc0 sc0 ls0 ws0">n</div><div class="t m0 x8e h2 y63 ff1 fs0 fc0 sc0 ls0 ws0">和它们进行重要性比较<span class="ff2 fs1">,<span class="_"> </span></span>再</div><div class="t m0 x2 h2 y67 ff1 fs0 fc0 sc0 ls0 ws0">单<span class="_ _a"> </span>独计<span class="_ _0"></span>算<span class="_ _0"></span>每一<span class="_ _0"></span>组<span class="_ _0"></span>的权<span class="_ _0"></span>重<span class="_ _4"></span><span class="ff2 fs1">:<span class="_ _15"> </span><span class="ff7 fsa">w</span></span></div><div class="t m0 x8f h11 y68 ff7 fsb fc0 sc0 ls0 ws0">j</div><div class="t m0 x8f hf y69 ff2 fs9 fc0 sc0 ls0 ws0">1</div><div class="t m0 x5d h4 y67 ff2 fs1 fc0 sc0 ls0 ws0">,<span class="_ _17"></span><span class="ff7 fsa">w</span></div><div class="t m0 x90 h11 y68 ff7 fsb fc0 sc0 ls0 ws0">j</div><div class="t m0 x90 hf y69 ff2 fs9 fc0 sc0 ls0 ws0">2</div><div class="t m0 x45 h2 y67 ff2 fs1 fc0 sc0 ls0 ws0">,<span class="_"> </span><span class="ff1 fs0">…</span>,<span class="_ _11"></span><span class="ff7 fsa">w</span></div><div class="t m0 x19 h11 y68 ff7 fsb fc0 sc0 ls0 ws0">j</div><div class="t m0 x35 h11 y69 ff7 fsb fc0 sc0 ls0 ws0">n</div><div class="t m0 x48 h2 y67 ff2 fs1 fc0 sc0 ls0 ws0">,<span class="_ _9"> </span><span class="ff7 fsa">j<span class="_ _10"> </span></span>=<span class="_ _27"> </span>1<span class="_ _0"></span>,<span class="_ _c"> </span>2,<span class="_ _c"> </span><span class="ff1 fs0">…</span>,<span class="_"> </span><span class="ff7 fsa">n<span class="_ _12"></span></span>,<span class="_ _14"> </span><span class="ff1 fs0">由此<span class="_ _0"></span>可以<span class="_ _0"></span>得<span class="_ _0"></span>到<span class="_ _a"> </span><span class="ff7 fsa">n<span class="_ _14"> </span></span>个<span class="_ _0"></span>权<span class="_ _0"></span>重向<span class="_ _0"></span>量<span class="_ _11"></span><span class="ff7 fsa">w</span></span></div><div class="t m0 x7e h11 y68 ff7 fsb fc0 sc0 ls0 ws0">j</div><div class="t m0 x7e h11 y69 ff7 fsb fc0 sc0 ls0 ws0">i</div><div class="t m0 x91 h4 y67 ff2 fs1 fc0 sc0 ls0 ws0">=</div><div class="t m0 x41 h4 y6a ff2 fs1 fc0 sc0 ls0 ws0">(</div><div class="t m0 x71 h12 y67 ff7 fsa fc0 sc0 ls0 ws0">w</div><div class="t m0 x92 h11 y68 ff7 fsb fc0 sc0 ls0 ws0">j</div><div class="t m0 x92 hf y69 ff2 fs9 fc0 sc0 ls0 ws0">1</div><div class="t m0 x93 h4 y67 ff2 fs1 fc0 sc0 ls0 ws0">,<span class="_ _17"></span><span class="ff7 fsa">w</span></div><div class="t m0 x94 h11 y68 ff7 fsb fc0 sc0 ls0 ws0">j</div><div class="t m0 x94 hf y69 ff2 fs9 fc0 sc0 ls0 ws0">2</div><div class="t m0 x95 h2 y67 ff2 fs1 fc0 sc0 ls0 ws0">,<span class="_"> </span><span class="ff1 fs0">…</span>,</div><div class="t m0 x96 h12 y6b ff7 fsa fc0 sc0 ls0 ws0">w</div><div class="t m0 x97 h11 y6c ff7 fsb fc0 sc0 ls0 ws0">j</div><div class="t m0 x97 h11 y6d ff7 fsb fc0 sc0 ls0 ws0">n</div><div class="t m0 x98 h4 y6e ff2 fs1 fc0 sc0 ls0 ws0">)</div><div class="t m0 x99 h11 y6c ff7 fsb fc0 sc0 ls0 ws0">T</div><div class="t m0 x39 h2 y6b ff2 fs1 fc0 sc0 ls0 ws0">,<span class="_ _5"> </span><span class="ff7 fsa">j<span class="_ _10"> </span></span>=<span class="_ _19"> </span>1<span class="_ _0"></span>,<span class="_ _c"> </span>2,<span class="_ _13"> </span><span class="ff1 fs0">…</span>,<span class="_"> </span><span class="ff7 fsa">n<span class="_ _0"></span></span>;<span class="_ _5"> </span><span class="ff1 fs0">那么</span>,<span class="_"> </span><span class="ff1 fs0">这<span class="_ _7"> </span><span class="ff7 fsa">n<span class="_ _5"> </span></span>个权重向量就是矩阵<span class="_ _12"></span><span class="ff7 fsa">A<span class="_ _14"> </span></span>′<span class="_ _26"></span>中的第一列至第<span class="_ _18"> </span><span class="ff7 fsa">n<span class="_ _14"> </span></span>列的<span class="_ _18"> </span><span class="ff7 fsa">n<span class="_ _5"> </span></span>个列向量<span class="ff2 fs1">,<span class="_"> </span></span>并且各组得</span></div><div class="t m0 x2 h2 y6f ff1 fs0 fc0 sc0 ls0 ws0">到的权重向量都相同<span class="_ _5"> </span>—<span class="_ _6"></span>—<span class="_ _7"> </span>它就是所有被比较对象的权重向量<span class="_ _8"></span><span class="ff2 fs1">,<span class="_"> </span><span class="ff1 fs0">即<span class="_ _1c"></span><span class="ff2 fs1">:<span class="_ _15"> </span><span class="ff7 fsa">w</span></span></span></span></div><div class="t m0 x9a hf y70 ff2 fs9 fc0 sc0 ls0 ws0">1</div><div class="t m0 x9a h11 y71 ff7 fsb fc0 sc0 ls0 ws0">i</div><div class="t m0 x9b h4 y6f ff2 fs1 fc0 sc0 ls0 ws0">=<span class="_ _1a"> </span><span class="ff7 fsa">w</span></div><div class="t m0 x1d hf y70 ff2 fs9 fc0 sc0 ls0 ws0">2</div><div class="t m0 x1d h11 y71 ff7 fsb fc0 sc0 ls0 ws0">i</div><div class="t m0 x30 h2 y6f ff2 fs1 fc0 sc0 ls0 ws0">=<span class="_ _c"> </span><span class="ff1 fs0">…<span class="_ _11"></span></span>=<span class="_ _1a"> </span><span class="ff7 fsa">w</span></div><div class="t m0 x9c h11 y70 ff7 fsb fc0 sc0 ls0 ws0">n</div><div class="t m0 x9c h11 y71 ff7 fsb fc0 sc0 ls0 ws0">i</div><div class="t m0 x9d h4 y6f ff2 fs1 fc0 sc0 ls0 ws0">=<span class="_ _1a"> </span><span class="ff7 fsa">w</span></div><div class="t m0 x9e h11 y71 ff7 fsb fc0 sc0 ls0 ws0">i</div><div class="t m0 x9e h2 y6f ff2 fs1 fc0 sc0 ls0 ws0">.<span class="_ _27"> </span><span class="ff1 fs0">此处<span class="ff7 fsa">w</span></span></div><div class="t m0 x94 h11 y70 ff7 fsb fc0 sc0 ls0 ws0">j</div><div class="t m0 x94 h11 y71 ff7 fsb fc0 sc0 ls0 ws0">i</div><div class="t m0 x95 h4 y72 ff2 fs1 fc0 sc0 ls0 ws0">(</div><div class="t m0 x9f h12 y73 ff7 fsa fc0 sc0 ls0 ws0">j</div><div class="t m0 xa0 h4 y6f ff2 fs1 fc0 sc0 ls0 ws0">=</div><div class="t m0 x2 h2 y74 ff2 fs1 fc0 sc0 ls0 ws0">1<span class="_ _0"></span>,<span class="_ _13"> </span>2<span class="_ _0"></span>,<span class="_ _c"> </span><span class="ff1 fs0">…</span>,<span class="_"> </span><span class="ff7 fsa">n</span></div><div class="t m0 xa1 h4 y75 ff2 fs1 fc0 sc0 ls0 ws0">)</div><div class="t m0 xa2 h2 y76 ff1 fs0 fc0 sc0 ls0 ws0">表示以<span class="_ _17"></span><span class="ff7 fsa">A</span></div><div class="t m0 xa3 h11 y77 ff7 fsb fc0 sc0 ls0 ws0">j</div><div class="t m0 xa4 h2 y74 ff1 fs0 fc0 sc0 ls0 ws0">为基准进行比较时<span class="ff2 fs1">,<span class="_ _17"></span><span class="ff7 fsa">A</span></span></div><div class="t m0 xa5 h11 y77 ff7 fsb fc0 sc0 ls0 ws0">i</div><div class="t m0 x80 h2 y74 ff1 fs0 fc0 sc0 ls0 ws0">获得的权重<span class="_ _4"></span><span class="ff2 fs1">;<span class="_ _f"> </span><span class="ff7 fsa">w</span></span></div><div class="t m0 xa6 h11 y77 ff7 fsb fc0 sc0 ls0 ws0">i</div><div class="t m0 xa7 h2 y74 ff1 fs0 fc0 sc0 ls0 ws0">是<span class="_ _17"></span><span class="ff7 fsa">A</span></div><div class="t m0 x8a h11 y77 ff7 fsb fc0 sc0 ls0 ws0">i</div><div class="t m0 x9a h2 y74 ff1 fs0 fc0 sc0 ls0 ws0">的权重<span class="_ _1f"></span><span class="ff2 fs1">.</span></div><div class="t m0 x39 h2 y78 ff1 fs0 fc0 sc0 ls0 ws0">再<span class="_ _1c"></span>对矩阵<span class="_ _12"></span><span class="ff7 fsa">A<span class="_ _14"> </span></span>′<span class="_ _28"></span>作如下变换<span class="ff2 fs1">,<span class="_ _e"> </span></span>即选取其中的任何一个列向量<span class="ff2 fs1">,<span class="_"> </span></span>用该向量的各分量除以矩阵<span class="_ _1c"></span><span class="ff7 fsa">A<span class="_ _14"> </span><span class="ff1 fs0">′<span class="_ _28"></span>中所有的列</span></span></div><div class="t m0 x2 h2 y79 ff1 fs0 fc0 sc0 ls0 ws0">向量中与之对应的各分量<span class="_ _1"> </span>—<span class="_ _6"></span>—<span class="_ _5"> </span>该操作姑且称为<span class="_ _29"></span>“<span class="_ _6"></span>列向量除法”<span class="_ _2a"></span><span class="ff2 fs1">,<span class="_"> </span><span class="ff1 fs0">则得矩阵<span class="_ _17"></span><span class="ff7 fsa">A<span class="_ _1d"> </span></span>″<span class="_ _2a"></span><span class="ff2 fs1">:</span></span></span></div><div class="t m0 xa8 h2 y7a ff7 fsa fc0 sc0 ls0 ws0">A<span class="_ _14"> </span><span class="ff1 fs0">″<span class="_ _25"></span><span class="ff2 fs1">=</span></span></div><div class="t m0 xa9 h2 y7b ff2 fs1 fc0 sc0 ls0 ws0">1<span class="_ _2b"> </span>1<span class="_ _2b"> </span>1<span class="_ _2b"> </span><span class="ff1 fs0">…<span class="_"> </span></span>1</div><div class="t m0 xa9 h2 y7c ff2 fs1 fc0 sc0 ls0 ws0">1<span class="_ _2b"> </span>1<span class="_ _2b"> </span>1<span class="_ _2b"> </span><span class="ff1 fs0">…<span class="_"> </span></span>1</div><div class="t m0 xa9 h2 y7a ff2 fs1 fc0 sc0 ls0 ws0">1<span class="_ _2b"> </span>1<span class="_ _2b"> </span>1<span class="_ _2b"> </span><span class="ff1 fs0">…<span class="_"> </span></span>1</div><div class="t m0 xaa h14 y7d ff8 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 xa9 h2 y7e ff2 fs1 fc0 sc0 ls0 ws0">1<span class="_ _2b"> </span>1<span class="_ _2b"> </span>1<span class="_ _2b"> </span><span class="ff1 fs0">…<span class="_"> </span></span>1</div><div class="t m0 x2 h2 y7f ff1 fs0 fc0 sc0 ls0 ws0">  经过归一化处理和<span class="_ _29"></span>“<span class="_ _4"></span>列向量除法<span class="_ _0"></span>”<span class="_ _26"></span>以后<span class="ff2 fs1">,<span class="_"> </span></span>得到<span class="_ _0"></span>的矩阵<span class="_ _11"></span><span class="ff7 fsa">A<span class="_ _14"> </span></span>″<span class="_ _25"></span>中的每<span class="_ _0"></span>一个元<span class="_ _0"></span>素值都为<span class="_ _1"> </span><span class="ff2 fs1">1<span class="_ _21"></span>.<span class="_ _20"> </span><span class="ff1 fs0">由此可以<span class="_ _0"></span>得出如<span class="_ _0"></span>下</span></span></div><div class="t m0 x2 h2 y80 ff1 fs0 fc0 sc0 ls0 ws0">的定理<span class="_ _1f"></span><span class="ff2 fs1">.</span></div><div class="t m0 x39 h2 y81 ff3 fs0 fc0 sc0 ls0 ws0">定理<span class="_ _a"> </span> <span class="_ _a"> </span><span class="ff1">判断矩阵<span class="_ _17"></span><span class="ff7 fsa">A<span class="_ _13"> </span></span>满足完全一致性的充<span class="_ _0"></span>要条件<span class="_ _0"></span>是<span class="_ _4"></span><span class="ff2 fs1">:<span class="_ _5"> </span><span class="ff1 fs0">对<span class="_ _0"></span>该判断<span class="_ _0"></span>矩阵的<span class="_ _0"></span>每一列分<span class="_ _0"></span>别作归<span class="_ _0"></span>一化处<span class="_ _0"></span>理和<span class="_ _29"></span>“<span class="_ _6"></span>列</span></span></span></div><div class="t m0 x2 h2 y82 ff1 fs0 fc0 sc0 ls0 ws0">向量除法”<span class="_ _24"></span>后<span class="ff2 fs1">,<span class="_"> </span></span>得到的新矩阵<span class="_ _17"></span><span class="ff7 fsa">A<span class="_ _14"> </span></span>″<span class="_ _25"></span>中的所有元素值都是<span class="_ _a"> </span><span class="ff2 fs1">1<span class="_ _21"></span>.</span></div><div class="t m0 x39 h2 y83 ff3 fs0 fc0 sc0 ls0 ws0">证明<span class="ff1"> 充分性<span class="_ _4"></span><span class="ff2 fs1">:<span class="_ _5"> </span><span class="ff1 fs0">设有一判断矩阵<span class="_ _17"></span><span class="ff7 fsa">A<span class="_ _e"> </span></span></span>=</span></span></div><div class="t m0 x14 h4 y84 ff2 fs1 fc0 sc0 ls0 ws0">(</div><div class="t m0 xab h12 y83 ff7 fsa fc0 sc0 ls0 ws0">a</div><div class="t m0 x6f h11 y85 ff7 fsb fc0 sc0 ls0 ws0">i<span class="_ _0"></span>j</div><div class="t m0 xac h4 y86 ff2 fs1 fc0 sc0 ls0 ws0">)</div><div class="t m0 xad h13 y85 ff7 fsb fc0 sc0 ls0 ws0">n<span class="_ _0"></span><span class="ff1 fsc">×</span>n</div><div class="t m0 x2b h2 y83 ff2 fs1 fc0 sc0 ls0 ws0">,<span class="_"> </span><span class="ff1 fs0">并且<span class="_ _12"></span><span class="ff7 fsa">A<span class="_ _13"> </span></span>满足完<span class="_ _8"></span>全一致性<span class="_ _1f"></span><span class="ff2 fs1">.<span class="_ _16"> </span><span class="ff1 fs0">由完全一致性可知</span>,<span class="_"> </span><span class="ff1 fs0">对于任意</span></span></span></div><div class="t m0 x9f h4 y87 ff2 fs1 fc0 sc0 ls0 ws0">5<span class="_ _2c"></span>8</div><div class="t m0 x2 h9 y88 ff1 fs6 fc0 sc0 ls0 ws0">第<span class="_ _7"> </span><span class="ff2 fs5">6<span class="_ _a"> </span></span>期</div><div class="t m0 xae h8 y87 ff2 fs5 fc0 sc0 ls0 ws0">A<span class="_ _17"></span>H<span class="_ _11"> </span>P</div><div class="t m0 x1a h9 y88 ff1 fs6 fc0 sc0 ls0 ws0">中不一致性判断矩阵调整<span class="_ _0"></span>的新方法</div><div class="t m0 x44 h10 y3b ff6 fs6 fc1 sc0 ls0 ws0">© 1995-2005 Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved.</div></div><div class="pi" data-data='{"ctm":[1.733078,0.000000,0.000000,1.733078,0.000000,0.000000]}'></div></div><div id="pf3" class="pf w0 h0" data-page-no="3"><div class="pc pc3 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src="/image.php?url=https://csdnimg.cn/release/download_crawler_static/89707154/bg3.jpg"><div class="t m0 x2 h2 y2 ff1 fs0 fc0 sc0 ls0 ws0">的<span class="_ _a"> </span><span class="ff7 fsa">k<span class="_ _17"></span><span class="ff2 fs1">,<span class="_ _13"> </span></span></span>都有<span class="_ _11"></span><span class="ff7 fsa">a</span></div><div class="t m0 x53 h11 y89 ff7 fsb fc0 sc0 ls0 ws0">i<span class="_ _0"></span>j</div><div class="t m0 x79 h4 y2 ff2 fs1 fc0 sc0 ls0 ws0">=<span class="_ _c"> </span><span class="ff7 fsa">a</span></div><div class="t m0 x43 h11 y89 ff7 fsb fc0 sc0 ls0 ws0">ik</div><div class="t m0 x74 h2 y2 ff1 fs0 fc0 sc0 ls0 ws0">×<span class="_ _11"></span><span class="ff7 fsa">a</span></div><div class="t m0 xaf h11 y89 ff7 fsb fc0 sc0 ls0 ws0">k<span class="_ _12"></span>j</div><div class="t m0 xb0 h3 y2 ff2 fs1 fc0 sc0 ls0 ws0">,<span class="_ _c"> </span><span class="ff7 fsa">i</span>,<span class="_ _e"> </span><span class="ff7 fsa">k<span class="_ _11"></span></span>,<span class="_ _13"> </span><span class="ff7 fsa">j<span class="_ _5"> </span><span class="ff4 fs0">Φ<span class="_ _10"> </span></span>n<span class="_ _6"></span><span class="ff2 fs1">.<span class="_ _16"> </span><span class="ff1 fs0">令<span class="_ _11"></span><span class="ff7 fsa">k<span class="_ _1"> </span></span></span>=<span class="_ _c"> </span><span class="ff7 fsa">n</span>;<span class="_ _1d"> </span><span class="ff7 fsa">i<span class="_ _0"></span></span>,<span class="_ _5"> </span><span class="ff7 fsa">j<span class="_ _5"> </span></span>=<span class="_ _c"> </span>1<span class="_ _0"></span>,<span class="_ _a"> </span>2<span class="_ _0"></span>,<span class="_ _1"> </span><span class="ff1 fs0">…</span>,<span class="_ _e"> </span><span class="ff7 fsa">n<span class="_ _17"></span></span>,<span class="_ _e"> </span><span class="ff1 fs0">由前面的等式可以得到下列<span class="_ _11"></span><span class="ff7 fsa">n</span></span></span></span></div><div class="t m0 x28 hf y8a ff2 fs9 fc0 sc0 ls0 ws0">2</div><div class="t m0 xb1 h2 y2 ff1 fs0 fc0 sc0 ls0 ws0">个等式<span class="_ _4"></span><span class="ff2 fs1">:</span></div><div class="t m0 x2 h12 y3c ff7 fsa fc0 sc0 ls0 ws0">a</div><div class="t m0 x1 hf y8b ff7 fsb fc0 sc0 ls0 ws0">i<span class="ff2 fs9">1</span></div><div class="t m0 xb2 h4 y3c ff2 fs1 fc0 sc0 ls0 ws0">=<span class="_ _9"> </span><span class="ff7 fsa">a</span></div><div class="t m0 x42 h11 y8b ff7 fsb fc0 sc0 ls0 ws0">in</div><div class="t m0 xb3 h2 y3c ff1 fs0 fc0 sc0 ls0 ws0">×<span class="_ _18"> </span><span class="ff7 fsa">a</span></div><div class="t m0 xa2 hf y8b ff7 fsb fc0 sc0 ls0 ws0">n<span class="_ _0"></span><span class="ff2 fs9">1</span></div><div class="t m0 xb4 h4 y3c ff2 fs1 fc0 sc0 ls0 ws0">,<span class="_"> </span><span class="ff7 fsa">a</span></div><div class="t m0 xb5 hf y8b ff7 fsb fc0 sc0 ls0 ws0">i<span class="ff2 fs9">2</span></div><div class="t m0 x17 h4 y3c ff2 fs1 fc0 sc0 ls0 ws0">=<span class="_ _9"> </span><span class="ff7 fsa">a</span></div><div class="t m0 x58 h11 y8b ff7 fsb fc0 sc0 ls0 ws0">in</div><div class="t m0 xb6 h2 y3c ff1 fs0 fc0 sc0 ls0 ws0">×<span class="_ _18"> </span><span class="ff7 fsa">a</span></div><div class="t m0 xb7 hf y8b ff7 fsb fc0 sc0 ls0 ws0">n<span class="_ _0"></span><span class="ff2 fs9">2</span></div><div class="t m0 x33 h4 y3c ff2 fs1 fc0 sc0 ls0 ws0">,<span class="_ _e"> </span><span class="ff7 fsa">a</span></div><div class="t m0 xa hf y8b ff7 fsb fc0 sc0 ls0 ws0">i<span class="ff2 fs9">3</span></div><div class="t m0 xb8 h4 y3c ff2 fs1 fc0 sc0 ls0 ws0">=<span class="_ _9"> </span><span class="ff7 fsa">a</span></div><div class="t m0 x35 h11 y8b ff7 fsb fc0 sc0 ls0 ws0">in</div><div class="t m0 x1a h2 y3c ff1 fs0 fc0 sc0 ls0 ws0">×<span class="_ _18"> </span><span class="ff7 fsa">a</span></div><div class="t m0 xb9 hf y8b ff7 fsb fc0 sc0 ls0 ws0">n<span class="_ _0"></span><span class="ff2 fs9">3</span></div><div class="t m0 xac h2 y3c ff2 fs1 fc0 sc0 ls0 ws0">,<span class="_ _13"> </span><span class="ff1 fs0">…</span>,<span class="_ _e"> </span><span class="ff7 fsa">a</span></div><div class="t m0 xba h11 y8b ff7 fsb fc0 sc0 ls0 ws0">in</div><div class="t m0 x3c h4 y3c ff2 fs1 fc0 sc0 ls0 ws0">=<span class="_ _9"> </span><span class="ff7 fsa">a</span></div><div class="t m0 xbb h11 y8b ff7 fsb fc0 sc0 ls0 ws0">in</div><div class="t m0 xbc h2 y3c ff1 fs0 fc0 sc0 ls0 ws0">×<span class="_ _18"> </span><span class="ff7 fsa">a</span></div><div class="t m0 xbd h11 y8b ff7 fsb fc0 sc0 ls0 ws0">nn</div><div class="t m0 xbe h2 y3c ff2 fs1 fc0 sc0 ls0 ws0">,<span class="_ _c"> </span><span class="ff7 fsa">i<span class="_ _a"> </span></span>=<span class="_ _19"> </span>1,<span class="_ _1"> </span>2<span class="_ _0"></span>,<span class="_"> </span><span class="ff1 fs0">…</span>,<span class="_ _13"> </span><span class="ff7 fsa">n<span class="_ _6"></span><span class="ff2 fs1">.<span class="_ _16"> </span><span class="ff1 fs0">将以上得到的<span class="_ _18"> </span><span class="ff7 fsa">n</span></span></span></span></div><div class="t m0 xbf hf y8c ff2 fs9 fc0 sc0 ls0 ws0">2</div><div class="t m0 x95 h2 y3c ff1 fs0 fc0 sc0 ls0 ws0">个等</div><div class="t m0 x2 h2 y8d ff1 fs0 fc0 sc0 ls0 ws0">式的右式代入矩阵<span class="_ _0"></span><span class="ff7 fsa">A<span class="_ _1d"> </span><span class="ff2 fs1">,<span class="_"> </span></span></span>然后对矩阵<span class="_ _12"></span><span class="ff7 fsa">A<span class="_ _e"> </span></span>各列作归一化处理<span class="ff2 fs1">,<span class="_"> </span></span>得矩阵<span class="_ _11"></span><span class="ff7 fsa">A<span class="_ _1d"> </span></span>′<span class="_ _26"></span><span class="ff2 fs1">=</span></div><div class="t m0 x8b h4 y8e ff2 fs1 fc0 sc0 ls0 ws0">(</div><div class="t m0 x8c h12 y8d ff7 fsa fc0 sc0 ls0 ws0">a</div><div class="t m0 xc h13 y8f ff1 fsc fc0 sc0 ls0 ws0">′</div><div class="t m0 xc0 h11 y90 ff7 fsb fc0 sc0 ls0 ws0">i<span class="_ _0"></span>j</div><div class="t m0 x6d h4 y8e ff2 fs1 fc0 sc0 ls0 ws0">)</div><div class="t m0 xc1 h13 y90 ff7 fsb fc0 sc0 ls0 ws0">n<span class="_ _0"></span><span class="ff1 fsc">×</span>n</div><div class="t m0 x31 h2 y8d ff2 fs1 fc0 sc0 ls0 ws0">,<span class="_"> </span><span class="ff1 fs0">且<span class="_ _18"> </span><span class="ff7 fsa">a</span></span></div><div class="t m0 xc2 h13 y8f ff1 fsc fc0 sc0 ls0 ws0">′</div><div class="t m0 xc2 h11 y90 ff7 fsb fc0 sc0 ls0 ws0">i<span class="_ _0"></span>j</div><div class="t m0 xc3 h4 y8d ff2 fs1 fc0 sc0 ls0 ws0">=<span class="_ _c"> </span><span class="ff7 fsa">a</span></div><div class="t m0 xc4 h11 y90 ff7 fsb fc0 sc0 ls0 ws0">in</div><div class="t m0 x7e h14 y8d ff8 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 xc5 h4 y8e ff2 fs1 fc0 sc0 ls0 ws0">(</div><div class="t m0 x24 h12 y8d ff7 fsa fc0 sc0 ls0 ws0">a</div><div class="t m0 xc6 hf y90 ff2 fs9 fc0 sc0 ls0 ws0">1<span class="ff7 fsb">n</span></div><div class="t m0 xc7 h4 y8d ff2 fs1 fc0 sc0 ls0 ws0">+<span class="_ _c"> </span><span class="ff7 fsa">a</span></div><div class="t m0 xc8 hf y90 ff2 fs9 fc0 sc0 ls0 ws0">2<span class="ff7 fsb">n</span></div><div class="t m0 xc9 h2 y8d ff2 fs1 fc0 sc0 ls0 ws0">+<span class="_ _9"> </span><span class="ff1 fs0">…</span></div><div class="t m0 x2 h4 y91 ff2 fs1 fc0 sc0 ls0 ws0">+<span class="_ _c"> </span><span class="ff7 fsa">a</span></div><div class="t m0 x32 h11 y92 ff7 fsb fc0 sc0 ls0 ws0">nn</div><div class="t m0 xca h4 y93 ff2 fs1 fc0 sc0 ls0 ws0">)</div><div class="t m0 x44 h2 y3e ff2 fs1 fc0 sc0 ls0 ws0">.<span class="_ _27"> </span><span class="ff1 fs0">对于矩阵<span class="_ _0"></span><span class="ff7 fsa">A</span></span></div><div class="t m0 xcb h2 y91 ff1 fs0 fc0 sc0 ls0 ws0">′<span class="_ _2d"></span><span class="ff2 fs1">,<span class="_"> </span><span class="ff1 fs0">再用其第一列中的各分量</span></span></div><div class="t m0 x88 h4 y94 ff2 fs1 fc0 sc0 ls0 ws0">(</div><div class="t m0 x9 h2 y91 ff1 fs0 fc0 sc0 ls0 ws0">或其它任何一列</div><div class="t m0 xcc h4 y94 ff2 fs1 fc0 sc0 ls0 ws0">)</div><div class="t m0 x84 h2 y91 ff1 fs0 fc0 sc0 ls0 ws0">分别除以每一列中对应的各分<span class="_ _8"></span>量<span class="ff2 fs1">,<span class="_"> </span></span>得矩</div><div class="t m0 x2 h2 y95 ff1 fs0 fc0 sc0 ls0 ws0">阵<span class="_ _17"></span><span class="ff7 fsa">A<span class="_ _14"> </span></span>″<span class="_ _2d"></span><span class="ff2 fs1">,<span class="_ _1"> </span><span class="ff1 fs0">此时</span>,<span class="_"> </span><span class="ff1 fs0">矩阵<span class="_ _17"></span><span class="ff7 fsa">A<span class="_ _1d"> </span></span>″<span class="_ _25"></span>所有的元素<span class="_ _18"> </span><span class="ff7 fsa">a</span></span></span></div><div class="t m0 xb8 h13 y96 ff1 fsc fc0 sc0 ls0 ws0">″</div><div class="t m0 xcd h11 y97 ff7 fsb fc0 sc0 ls0 ws0">i<span class="_ _0"></span>j</div><div class="t m0 xce h2 y95 ff1 fs0 fc0 sc0 ls0 ws0">都为<span class="_ _a"> </span><span class="ff2 fs1">1<span class="_ _21"></span>.<span class="_ _1e"> </span><span class="ff1 fs0">充分性证毕<span class="_ _1f"></span><span class="ff2 fs1">.</span></span></span></div><div class="t m0 x39 h2 y98 ff1 fs0 fc0 sc0 ls0 ws0">必要性<span class="_ _1c"></span><span class="ff2 fs1">:<span class="_ _5"> </span><span class="ff1 fs0">已知某一判断矩阵<span class="_ _12"></span><span class="ff7 fsa">A<span class="_ _f"> </span></span>经过归一化处理和<span class="_ _29"></span>“<span class="_ _6"></span>列向量除法”<span class="_ _2e"></span>后<span class="ff2 fs1">,<span class="_"> </span></span>所有的元素都为<span class="_ _15"> </span><span class="ff2 fs1">1<span class="_ _0"></span>,<span class="_ _1"> </span></span>那么<span class="ff2 fs1">,<span class="_ _a"> </span></span>该判断矩</span></span></div><div class="t m0 x2 h2 y99 ff1 fs0 fc0 sc0 ls0 ws0">阵的秩应该为<span class="_ _18"> </span><span class="ff2 fs1">1<span class="_ _21"></span>.<span class="_ _16"> </span><span class="ff1 fs0">下面用反证法证明必要性<span class="_ _1f"></span><span class="ff2 fs1">.<span class="_ _16"> </span><span class="ff1 fs0">假定原判断矩阵不具有完全一致性</span>,<span class="_"> </span><span class="ff1 fs0">那么</span>,<span class="_ _a"> </span><span class="ff1 fs0">一定存在某一个<span class="_ _18"> </span><span class="ff7 fsa">k</span></span></span></span></span></div><div class="t m0 x2 h2 y9a ff1 fs0 fc0 sc0 ls0 ws0">和<span class="_ _7"> </span><span class="ff7 fsa">a</span></div><div class="t m0 xcf h11 y9b ff7 fsb fc0 sc0 ls0 ws0">ik</div><div class="t m0 xca h2 y9a ff2 fs1 fc0 sc0 ls0 ws0">,<span class="_ _13"> </span><span class="ff1 fs0">使得下列不等成立<span class="_ _4"></span><span class="ff2 fs1">:<span class="_ _1"> </span><span class="ff7 fsa">a</span></span></span></div><div class="t m0 x5b h11 y9b ff7 fsb fc0 sc0 ls0 ws0">i<span class="_ _0"></span>j</div><div class="t m0 x3a h2 y9a ff1 fs0 fc0 sc0 ls0 ws0">≠<span class="_ _7"> </span><span class="ff7 fsa">a</span></div><div class="t m0 xb8 h11 y9b ff7 fsb fc0 sc0 ls0 ws0">ik</div><div class="t m0 x87 h2 y9a ff1 fs0 fc0 sc0 ls0 ws0">×<span class="_ _18"> </span><span class="ff7 fsa">a</span></div><div class="t m0 xa8 h11 y9b ff7 fsb fc0 sc0 ls0 ws0">k<span class="_ _12"></span>j</div><div class="t m0 xd0 h2 y9a ff2 fs1 fc0 sc0 ls0 ws0">.<span class="_ _1e"> </span><span class="ff1 fs0">现分别取<span class="_ _a"> </span><span class="ff7 fsa">j<span class="_ _1d"> </span></span></span>=<span class="_ _19"> </span>1<span class="_ _0"></span>,<span class="_ _a"> </span>2<span class="_ _0"></span>,<span class="_ _1"> </span><span class="ff1 fs0">…</span>,<span class="_"> </span><span class="ff7 fsa">n<span class="_ _12"></span></span>,<span class="_ _1"> </span><span class="ff1 fs0">可得下列<span class="_ _7"> </span><span class="ff7 fsa">n<span class="_ _5"> </span></span>个不等式<span class="_ _4"></span><span class="ff2 fs1">:<span class="_ _1"> </span><span class="ff7 fsa">a</span></span></span></div><div class="t m0 x24 hf y9b ff7 fsb fc0 sc0 ls0 ws0">i<span class="ff2 fs9">1</span></div><div class="t m0 xd1 h2 y9a ff1 fs0 fc0 sc0 ls0 ws0">≠<span class="_ _18"> </span><span class="ff7 fsa">a</span></div><div class="t m0 xb1 h11 y9b ff7 fsb fc0 sc0 ls0 ws0">ik</div><div class="t m0 xd2 h2 y9a ff1 fs0 fc0 sc0 ls0 ws0">×<span class="_ _18"> </span><span class="ff7 fsa">a</span></div><div class="t m0 xd3 hf y9b ff7 fsb fc0 sc0 ls0 ws0">k<span class="_ _12"></span><span class="ff2 fs9">1</span></div><div class="t m0 xd4 h4 y9a ff2 fs1 fc0 sc0 ls0 ws0">,</div><div class="t m0 x2 h12 y9c ff7 fsa fc0 sc0 ls0 ws0">a</div><div class="t m0 x1 hf y9d ff7 fsb fc0 sc0 ls0 ws0">i<span class="ff2 fs9">2</span></div><div class="t m0 xb2 h2 y9c ff1 fs0 fc0 sc0 ls0 ws0">≠<span class="_ _7"> </span><span class="ff7 fsa">a</span></div><div class="t m0 x42 h11 y9d ff7 fsb fc0 sc0 ls0 ws0">ik</div><div class="t m0 xb3 h2 y9c ff1 fs0 fc0 sc0 ls0 ws0">×<span class="_ _7"> </span><span class="ff7 fsa">a</span></div><div class="t m0 xd5 hf y9d ff7 fsb fc0 sc0 ls0 ws0">k<span class="_ _12"></span><span class="ff2 fs9">2</span></div><div class="t m0 xb4 h2 y9c ff2 fs1 fc0 sc0 ls0 ws0">,<span class="_"> </span><span class="ff1 fs0">…</span>,<span class="_"> </span><span class="ff7 fsa">a</span></div><div class="t m0 xd6 h11 y9d ff7 fsb fc0 sc0 ls0 ws0">in</div><div class="t m0 x4 h2 y9c ff1 fs0 fc0 sc0 ls0 ws0">≠<span class="_ _7"> </span><span class="ff7 fsa">a</span></div><div class="t m0 x37 h11 y9d ff7 fsb fc0 sc0 ls0 ws0">ik</div><div class="t m0 x6 h2 y9c ff1 fs0 fc0 sc0 ls0 ws0">×<span class="_ _7"> </span><span class="ff7 fsa">a</span></div><div class="t m0 x45 h11 y9d ff7 fsb fc0 sc0 ls0 ws0">k<span class="_ _0"></span>n</div><div class="t m0 x13 h2 y9c ff2 fs1 fc0 sc0 ls0 ws0">.<span class="_ _1e"> </span><span class="ff1 fs0">根据上面<span class="_ _18"> </span><span class="ff7 fsa">n<span class="_ _14"> </span></span>个不等式可知</span>,<span class="_"> </span><span class="ff1 fs0">矩阵<span class="_ _17"></span><span class="ff7 fsa">A<span class="_ _13"> </span></span>中的第<span class="_ _7"> </span><span class="ff7 fsa">k<span class="_ _1d"> </span></span>行和第<span class="_ _1"> </span><span class="ff7 fsa">i<span class="_ _1"> </span></span>行不成比例</span>,<span class="_"> </span><span class="ff1 fs0">故矩</span></div><div class="t m0 x2 h2 y9e ff1 fs0 fc0 sc0 ls0 ws0">阵<span class="_ _17"></span><span class="ff7 fsa">A<span class="_ _13"> </span></span>的秩至少为<span class="_ _a"> </span><span class="ff2 fs1">2<span class="_ _0"></span>,<span class="_ _1"> </span></span>与已知矛盾<span class="_ _1f"></span><span class="ff2 fs1">.<span class="_ _1e"> </span><span class="ff1 fs0">因此</span>,<span class="_ _1"> </span><span class="ff1 fs0">假设不成立</span>,<span class="_"> </span><span class="ff1 fs0">也即原判断矩阵<span class="_ _17"></span><span class="ff7 fsa">A<span class="_ _13"> </span></span>具有完全一致<span class="_ _1f"></span><span class="ff2 fs1">.<span class="_ _1e"> </span><span class="ff1 fs0">必要性证毕<span class="_ _21"></span><span class="ff2 fs1">.</span></span></span></span></span></div><div class="t m0 x2 h3 y9f ff5 fs1 fc0 sc0 ls0 ws0">2<span class="ff4 fs0">1</span>2<span class="_ _0"></span><span class="ff3 fs0"> 不满足一致性要求的判断矩阵调整方法</span></div><div class="t m0 x39 h3 ya0 ff1 fs0 fc0 sc0 ls0 ws0">由<span class="_ _a"> </span><span class="ff2 fs1">2</span><span class="ff4">1<span class="ff2 fs1">1<span class="_ _1"> </span></span></span>的<span class="_ _0"></span>分析可<span class="_ _0"></span>知<span class="ff2 fs1">,<span class="_ _a"> </span></span>对<span class="_ _0"></span>任何一<span class="_ _0"></span>个判断<span class="_ _0"></span>矩阵<span class="_ _11"></span><span class="ff7 fsa">A<span class="_ _14"> </span><span class="ff2 fs1">,<span class="_ _a"> </span></span></span>先<span class="_ _0"></span>对其各<span class="_ _0"></span>列作归<span class="_ _0"></span>一化<span class="_ _0"></span>处<span class="_ _0"></span>理<span class="ff2 fs1">,<span class="_ _1"> </span></span>然<span class="_ _0"></span>后<span class="_ _0"></span>再用<span class="_ _0"></span>归<span class="_ _0"></span>一化<span class="_ _0"></span>后<span class="_ _0"></span>的任<span class="_ _0"></span>何<span class="_ _0"></span>一</div><div class="t m0 x2 h2 ya1 ff1 fs0 fc0 sc0 ls0 ws0">列的中各分量<span class="ff2 fs1">,<span class="_ _5"> </span></span>分别<span class="_ _0"></span>除以<span class="_ _0"></span>矩<span class="_ _0"></span>阵中<span class="_ _0"></span>所<span class="_ _0"></span>有列<span class="_ _0"></span>中<span class="_ _0"></span>的<span class="_ _0"></span>对应<span class="_ _0"></span>分<span class="_ _0"></span>量<span class="ff2 fs1">,<span class="_ _5"> </span></span>如果<span class="_ _0"></span>得到<span class="_ _0"></span>的<span class="_ _0"></span>新矩<span class="_ _0"></span>阵<span class="_ _0"></span>中<span class="_ _0"></span>所有<span class="_ _0"></span>的<span class="_ _0"></span>元素<span class="_ _0"></span>值<span class="_ _0"></span>都为<span class="_ _1"> </span><span class="ff2 fs1">1<span class="_ _0"></span>,<span class="_ _5"> </span></span>则<span class="_ _0"></span>该<span class="_ _0"></span>判</div><div class="t m0 x2 h2 ya2 ff1 fs0 fc0 sc0 ls0 ws0">断矩阵满足<span class="_ _0"></span>完全一<span class="_ _0"></span>致性要求</div><div class="t m0 xd7 h4 ya3 ff2 fs1 fc0 sc0 ls0 ws0">(</div><div class="t m0 x33 h2 ya2 ff1 fs0 fc0 sc0 ls0 ws0">此时<span class="ff2 fs1">,<span class="_ _18"> </span><span class="ff7 fsa">C<span class="_ _0"></span>R<span class="_ _f"> </span></span>=<span class="_ _27"> </span>0</span></div><div class="t m0 x7f h4 ya3 ff2 fs1 fc0 sc0 ls0 ws0">)</div><div class="t m0 x6f h2 ya2 ff2 fs1 fc0 sc0 ls0 ws0">;<span class="_ _5"> </span><span class="ff1 fs0">如果<span class="_ _0"></span>该矩阵<span class="_ _0"></span>中的所<span class="_ _0"></span>有元素<span class="_ _0"></span>值都有接<span class="_ _0"></span>近<span class="_ _a"> </span></span>1<span class="_ _0"></span>,<span class="_ _1"> </span><span class="ff1 fs0">则<span class="_ _0"></span>该判断<span class="_ _0"></span>矩阵<span class="_ _0"></span>的一</span></div><div class="t m0 x2 h2 ya4 ff1 fs0 fc0 sc0 ls0 ws0">致性应该比较好</div><div class="t m0 xd8 h4 ya5 ff2 fs1 fc0 sc0 ls0 ws0">(</div><div class="t m0 x43 h3 ya4 ff1 fs0 fc0 sc0 ls0 ws0">此时<span class="ff2 fs1">,<span class="_ _15"> </span><span class="ff7 fsa">C<span class="_ _12"></span>R<span class="_ _f"> </span></span><<span class="_ _19"> </span>0<span class="_ _0"></span></span><span class="ff4">1<span class="ff2 fs1">1</span></span></div><div class="t m0 x85 h4 ya5 ff2 fs1 fc0 sc0 ls0 ws0">)</div><div class="t m0 x86 h2 ya4 ff2 fs1 fc0 sc0 ls0 ws0">;<span class="_ _5"> </span><span class="ff1 fs0">如果某些元素值与<span class="_ _7"> </span></span>1<span class="_ _5"> </span><span class="ff1 fs0">偏差较大</span>,<span class="_"> </span><span class="ff1 fs0">则<span class="_ _0"></span>该判断矩<span class="_ _0"></span>阵的一<span class="_ _0"></span>致性比<span class="_ _0"></span>较差</span></div><div class="t m0 xd9 h4 ya5 ff2 fs1 fc0 sc0 ls0 ws0">(</div><div class="t m0 xbf h2 ya4 ff1 fs0 fc0 sc0 ls0 ws0">此时<span class="ff2 fs1">,</span></div><div class="t m0 xda h3 ya6 ff7 fsa fc0 sc0 ls0 ws0">C<span class="_ _12"></span>R<span class="_ _1a"> </span><span class="ff4 fs0">Ε<span class="_ _c"> </span><span class="ff2 fs1">0</span>1<span class="ff2 fs1">1</span></span></div><div class="t m0 xdb h4 ya7 ff2 fs1 fc0 sc0 ls0 ws0">)</div><div class="t m0 xdc h2 ya6 ff2 fs1 fc0 sc0 ls0 ws0">,<span class="_"> </span><span class="ff1 fs0">则需要对该矩阵进行调整<span class="_ _1f"></span><span class="ff2 fs1">.<span class="_ _1e"> </span><span class="ff1 fs0">对调整后的判断矩<span class="_ _8"></span>阵再重新计算其一致性指标<span class="_ _11"></span><span class="ff7 fsa">C<span class="_ _12"></span>R<span class="_"> </span><span class="ff2 fs1">,<span class="_ _a"> </span></span></span>如果<span class="_ _11"></span><span class="ff7 fsa">C<span class="_ _12"></span>R<span class="_ _1a"> </span></span>小于</span></span></span></div><div class="t m0 x2 h3 ya8 ff2 fs1 fc0 sc0 ls0 ws0">0<span class="ff4 fs0">1</span>1<span class="_ _0"></span>,<span class="_ _e"> </span><span class="ff1 fs0">则调整结束<span class="_ _4"></span><span class="ff2 fs1">;<span class="_ _1"> </span><span class="ff1 fs0">否则</span>,<span class="_ _1"> </span><span class="ff1 fs0">重复以上步骤</span>,<span class="_"> </span><span class="ff1 fs0">直至满足一致性要求<span class="_ _1f"></span><span class="ff2 fs1">.<span class="_ _1e"> </span><span class="ff1 fs0">这就是本文新算法的设计思路<span class="_ _1f"></span><span class="ff2 fs1">.</span></span></span></span></span></span></div><div class="t m0 x39 h2 ya9 ff1 fs0 fc0 sc0 ls0 ws0">此外<span class="ff2 fs1">,<span class="_ _1"> </span></span>根据第<span class="_ _1"> </span><span class="ff2 fs1">1<span class="_ _5"> </span></span>部分的分<span class="_ _0"></span>析<span class="ff2 fs1">,<span class="_ _a"> </span></span>本<span class="_ _0"></span>文将要<span class="_ _0"></span>给出的<span class="_ _0"></span>新算法的<span class="_ _0"></span>指导思<span class="_ _0"></span>想是<span class="_ _1c"></span><span class="ff2 fs1">:<span class="_ _5"> </span><span class="ff1 fs0">新<span class="_ _0"></span>算<span class="_ _0"></span>法既<span class="_ _0"></span>要<span class="_ _0"></span>保证<span class="_ _0"></span>调<span class="_ _0"></span>整后<span class="_ _0"></span>的<span class="_ _0"></span>判断<span class="_ _0"></span>矩</span></span></div><div class="t m0 x2 h2 yaa ff1 fs0 fc0 sc0 ls0 ws0">阵满足一<span class="_ _0"></span>致性要<span class="_ _0"></span>求<span class="ff2 fs1">,<span class="_ _a"> </span></span>又<span class="_ _0"></span>要在<span class="_ _0"></span>调整<span class="_ _0"></span>过<span class="_ _0"></span>程中<span class="_ _0"></span>充<span class="_ _0"></span>分尊<span class="_ _0"></span>重<span class="_ _0"></span>判<span class="_ _0"></span>断者<span class="_ _0"></span>的<span class="_ _0"></span>意愿<span class="_ _21"></span><span class="ff2 fs1">.<span class="_ _20"> </span><span class="ff1 fs0">为此</span>,<span class="_ _1"> </span><span class="ff1 fs0">新<span class="_ _0"></span>的<span class="_ _0"></span>算法<span class="_ _0"></span>首<span class="_ _0"></span>先<span class="_ _0"></span>将给<span class="_ _0"></span>出<span class="_ _0"></span>一定<span class="_ _0"></span>的<span class="_ _0"></span>规则</span>,</span></div><div class="t m0 x2 h2 yab ff1 fs0 fc0 sc0 ls0 ws0">然后由规<span class="_ _0"></span>则提示<span class="_ _0"></span>应该调<span class="_ _0"></span>整的元素<span class="_ _a"> </span><span class="ff7 fsa">a</span></div><div class="t m0 xae h11 yac ff7 fsb fc0 sc0 ls0 ws0">i<span class="_ _0"></span>j</div><div class="t m0 xce h2 yab ff2 fs1 fc0 sc0 ls0 ws0">,<span class="_ _e"> </span><span class="ff1 fs0">如果判断者<span class="_ _0"></span>认为规<span class="_ _0"></span>则提示<span class="_ _0"></span>的<span class="_ _0"></span>元素<span class="_ _0"></span>应<span class="_ _0"></span>该调<span class="_ _0"></span>整</span>,<span class="_ _1"> </span><span class="ff1 fs0">则<span class="_ _0"></span>按<span class="_ _0"></span>有关<span class="_ _0"></span>规<span class="_ _0"></span>则调<span class="_ _0"></span>整<span class="_ _0"></span>该<span class="_ _0"></span>元</span></div><div class="t m0 x2 h2 yad ff1 fs0 fc0 sc0 ls0 ws0">素<span class="_ _7"> </span><span class="ff7 fsa">a</span></div><div class="t m0 xcf h11 yae ff7 fsb fc0 sc0 ls0 ws0">i<span class="_ _0"></span>j</div><div class="t m0 x3f h2 yad ff1 fs0 fc0 sc0 ls0 ws0">及其互反元素<span class="_ _7"> </span><span class="ff7 fsa">a</span></div><div class="t m0 x7 h11 yae ff7 fsb fc0 sc0 ls0 ws0">j<span class="_ _17"> </span>i</div><div class="t m0 xa4 h2 yad ff1 fs0 fc0 sc0 ls0 ws0">的值<span class="_ _4"></span><span class="ff2 fs1">;<span class="_ _5"> </span><span class="ff1 fs0">如果判断者认为规则提示的元素不能<span class="_ _8"></span>修改</span></span></div><div class="t m0 x4b h4 yaf ff2 fs1 fc0 sc0 ls0 ws0">(</div><div class="t m0 xc0 h2 yad ff1 fs0 fc0 sc0 ls0 ws0">即判断者认为自己<span class="_ _0"></span>以前所<span class="_ _0"></span>做出的</div><div class="t m0 x2 h2 yb0 ff1 fs0 fc0 sc0 ls0 ws0">判断是正确的</div><div class="t m0 xb4 h4 yb1 ff2 fs1 fc0 sc0 ls0 ws0">)</div><div class="t m0 x21 h2 yb0 ff1 fs0 fc0 sc0 ls0 ws0">时<span class="ff2 fs1">,<span class="_"> </span></span>规则应该能给出新的提示<span class="ff2 fs1">,<span class="_"> </span></span>如此等等<span class="ff2 fs1">,<span class="_ _a"> </span></span>直到<span class="_ _0"></span>符合一致<span class="_ _0"></span>性要求<span class="_ _0"></span>的合理<span class="_ _0"></span>的调整<span class="_ _0"></span>方案出现<span class="_ _21"></span><span class="ff2 fs1">.<span class="_ _1e"> </span><span class="ff1 fs0">如</span></span></div><div class="t m0 x2 h2 yb2 ff1 fs0 fc0 sc0 ls0 ws0">果觉得有必要的话<span class="ff2 fs1">,<span class="_"> </span></span>再重启动算法<span class="ff2 fs1">,<span class="_"> </span></span>对原判断矩阵搜索其它合理的调整方案<span class="_ _1f"></span><span class="ff2 fs1">.</span></div><div class="t m0 x39 h2 yb3 ff1 fs0 fc0 sc0 ls0 ws0">根据以上分析<span class="ff2 fs1">,<span class="_"> </span></span>本文调整判断矩阵的算法如下<span class="_ _4"></span><span class="ff2 fs1">:</span></div><div class="t m0 x39 h15 yb4 ff5 fs1 fc0 sc0 ls0 ws0">S<span class="_ _0"></span>t<span class="_ _8"></span>ep</div><div class="t m0 xdd h2 yb5 ff5 fs1 fc0 sc0 ls0 ws0">0<span class="ff1 fs0"> 输入已构造出来的判断矩阵<span class="_ _0"></span><span class="ff7 fsa">A<span class="_ _f"> </span></span>的阶数<span class="_ _11"></span><span class="ff7 fsa">n<span class="_"> </span></span>及其值<span class="_ _17"></span><span class="ff7 fsa">a</span></span></div><div class="t m0 xde h11 yb6 ff7 fsb fc0 sc0 ls0 ws0">i<span class="_ _0"></span>j</div><div class="t m0 xdf h2 yb5 ff2 fs1 fc0 sc0 ls0 ws0">,<span class="_"> </span><span class="ff1 fs0">并打印输出<span class="ff7 fsa">A</span></span></div><div class="t m0 x8d h4 yb7 ff2 fs1 fc0 sc0 ls0 ws0">(</div><div class="t m0 xe0 h2 yb5 ff1 fs0 fc0 sc0 ls0 ws0">打印输出<span class="ff7 fsa">A<span class="_ _5"> </span><span class="ff2 fs1">,<span class="_ _f"> </span></span></span>主要是为了给</div><div class="t m0 x2 h2 yb8 ff1 fs0 fc0 sc0 ls0 ws0">判断者在后面选择调整元素时<span class="_ _8"></span>提供参考</div><div class="t m0 xa8 h4 yb9 ff2 fs1 fc0 sc0 ls0 ws0">)</div><div class="t m0 xd0 h4 yb8 ff2 fs1 fc0 sc0 ls0 ws0">.</div><div class="t m0 x39 h15 yba ff5 fs1 fc0 sc0 ls0 ws0">S<span class="_ _0"></span>t<span class="_ _8"></span>ep</div><div class="t m0 xe1 h3 ybb ff5 fs1 fc0 sc0 ls0 ws0">1<span class="ff1 fs0"> 计<span class="_ _1c"></span>算<span class="_ _1c"></span>判<span class="_ _1c"></span>断<span class="_ _4"></span>矩<span class="_ _1c"></span>阵<span class="_ _12"></span><span class="ff7 fsa">A<span class="_ _13"> </span></span>的<span class="_ _1c"></span>一<span class="_ _1c"></span>致<span class="_ _1c"></span>性<span class="_ _4"></span>指<span class="_ _1c"></span>标<span class="_ _11"></span><span class="ff7 fsa">C<span class="_ _0"></span>R<span class="_ _a"> </span><span class="ff2 fs1">,<span class="_ _a"> </span></span></span>如<span class="_ _1c"></span>果<span class="_ _11"></span><span class="ff7 fsa">C<span class="_ _0"></span>R<span class="_ _f"> </span></span>小<span class="_ _1c"></span>于<span class="_ _18"> </span><span class="ff2 fs1">0<span class="_ _0"></span></span><span class="ff4">1<span class="ff2 fs1">1<span class="_ _0"></span>,<span class="_ _f"> </span></span></span>则<span class="_ _1c"></span>结<span class="_ _1c"></span>束<span class="_ _1c"></span>调<span class="_ _4"></span>整<span class="_ _1c"></span><span class="ff2 fs1">,<span class="_ _1"> </span><span class="ff1 fs0">转</span></span></span></div><div class="t m0 xe2 h4 yba ff2 fs1 fc0 sc0 ls0 ws0">S<span class="_ _17"></span>t<span class="_ _0"></span>e<span class="_ _1c"></span>p</div><div class="t m0 xe3 h2 ybb ff2 fs1 fc0 sc0 ls0 ws0">6<span class="_ _1c"></span>;<span class="_ _5"> </span><span class="ff1 fs0">否<span class="_ _1c"></span>则<span class="_ _1c"></span><span class="ff2 fs1">,<span class="_"> </span><span class="ff1 fs0">转</span></span></span></div><div class="t m0 xe4 h4 yba ff2 fs1 fc0 sc0 ls0 ws0">S<span class="_ _17"></span>t<span class="_ _0"></span>e<span class="_ _1c"></span>p</div><div class="t m0 xd3 h4 ybb ff2 fs1 fc0 sc0 ls0 ws0">2<span class="_ _21"></span>.</div><div class="t m0 x39 h15 ybc ff5 fs1 fc0 sc0 ls0 ws0">S<span class="_ _0"></span>t<span class="_ _8"></span>ep</div><div class="t m0 xe1 h2 ybd ff5 fs1 fc0 sc0 ls0 ws0">2<span class="ff1 fs0"> 对判断矩阵<span class="_ _17"></span><span class="ff7 fsa">A<span class="_ _c"> </span></span>作归一化处<span class="_ _8"></span>理<span class="ff2 fs1">,<span class="_"> </span></span>设归一化后的矩阵为<span class="_ _17"></span><span class="ff7 fsa">A<span class="_ _14"> </span></span>′</span></div><div class="t m0 xe5 h2 ybe ff7 fsa fc0 sc0 ls0 ws0">A<span class="_ _14"> </span><span class="ff1 fs0">′<span class="_ _25"></span><span class="ff2 fs1">=</span></span></div><div class="t m0 xe6 h4 ybf ff2 fs1 fc0 sc0 ls0 ws0">(</div><div class="t m0 xe7 h12 ybe ff7 fsa fc0 sc0 ls0 ws0">a</div><div class="t m0 xcd h13 yc0 ff1 fsc fc0 sc0 ls0 ws0">′</div><div class="t m0 xcd h11 yc1 ff7 fsb fc0 sc0 ls0 ws0">i<span class="_ _0"></span>j</div><div class="t m0 x46 h4 yc2 ff2 fs1 fc0 sc0 ls0 ws0">)</div><div class="t m0 xe8 h13 yc1 ff7 fsb fc0 sc0 ls0 ws0">n<span class="_ _0"></span><span class="ff1 fsc">×</span>n</div><div class="t m0 xe9 h2 ybe ff2 fs1 fc0 sc0 ls0 ws0">,<span class="_"> </span><span class="ff1 fs0">其中<span class="_ _14"> </span><span class="ff7 fsa">a</span></span></div><div class="t m0 x2f h13 yc0 ff1 fsc fc0 sc0 ls0 ws0">′</div><div class="t m0 x2a h11 yc1 ff7 fsb fc0 sc0 ls0 ws0">i<span class="_ _0"></span>j</div><div class="t m0 x9 h4 ybe ff2 fs1 fc0 sc0 ls0 ws0">=<span class="_ _19"> </span><span class="ff7 fsa">a</span></div><div class="t m0 xea h11 yc1 ff7 fsb fc0 sc0 ls0 ws0">i<span class="_ _0"></span>j</div><div class="t m0 x82 h14 ybe ff8 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 xeb h6 yc3 ff1 fs3 fc0 sc0 ls0 ws0">∑</div><div class="t m0 x11 h11 yc4 ff7 fsb fc0 sc0 ls0 ws0">n</div><div class="t m0 xec hf yc5 ff7 fsb fc0 sc0 ls0 ws0">i<span class="ff2 fs9">=<span class="_ _a"> </span>1</span></div><div class="t m0 xbb h12 ybe ff7 fsa fc0 sc0 ls0 ws0">a</div><div class="t m0 x83 h11 yc1 ff7 fsb fc0 sc0 ls0 ws0">i<span class="_ _0"></span>j</div><div class="t m0 xde h4 yc2 ff2 fs1 fc0 sc0 ls0 ws0">(</div><div class="t m0 xdf h12 yc6 ff7 fsa fc0 sc0 ls0 ws0">j</div><div class="t m0 x68 h2 ybe ff2 fs1 fc0 sc0 ls0 ws0">=<span class="_ _19"> </span>1<span class="_ _0"></span>,<span class="_ _c"> </span>2,<span class="_ _13"> </span><span class="ff1 fs0">…</span>,<span class="_ _13"> </span><span class="ff7 fsa">n</span></div><div class="t m0 xe0 h4 yc2 ff2 fs1 fc0 sc0 ls0 ws0">)</div><div class="t m0 x2 h2 yc7 ff1 fs0 fc0 sc0 ls0 ws0"> <span class="_ _0"></span> </div><div class="t m0 x39 h15 y72 ff5 fs1 fc0 sc0 ls0 ws0">S<span class="_ _0"></span>t<span class="_ _8"></span>ep</div><div class="t m0 xdd h2 yc7 ff5 fs1 fc0 sc0 ls0 ws0">3<span class="ff1 fs0"> 以<span class="_ _12"></span><span class="ff7 fsa">A<span class="_ _14"> </span></span>′<span class="_ _28"></span>中的任何一列向量</span></div><div class="t m0 xed h4 yc8 ff2 fs1 fc0 sc0 ls0 ws0">(</div><div class="t m0 xee h2 yc7 ff1 fs0 fc0 sc0 ls0 ws0">不妨取第一列</div><div class="t m0 xba h4 yc8 ff2 fs1 fc0 sc0 ls0 ws0">)</div><div class="t m0 x3c h2 yc7 ff1 fs0 fc0 sc0 ls0 ws0">的各分量<span class="ff2 fs1">,<span class="_"> </span></span>除以矩阵<span class="ff7 fsa">A<span class="_ _14"> </span></span>′<span class="_ _28"></span>的每一列列向量中的对应分</div><div class="t m0 x2 h2 yc9 ff1 fs0 fc0 sc0 ls0 ws0">量<span class="ff2 fs1">,<span class="_ _a"> </span></span>得矩阵<span class="_ _17"></span><span class="ff7 fsa">A<span class="_ _1d"> </span></span>″</div><div class="t m0 xef h4 y31 ff2 fs1 fc0 sc0 ls0 ws0">(</div><div class="t m0 x2c h12 yc9 ff7 fsa fc0 sc0 ls0 ws0">a</div><div class="t m0 xf0 h11 yca ff7 fsb fc0 sc0 ls0 ws0">i<span class="_ _0"></span>j</div><div class="t m0 x2d h4 y31 ff2 fs1 fc0 sc0 ls0 ws0">)</div><div class="t m0 x17 h13 yca ff7 fsb fc0 sc0 ls0 ws0">n<span class="_ _0"></span><span class="ff1 fsc">×</span>n</div><div class="t m0 xe h2 yc9 ff2 fs1 fc0 sc0 ls0 ws0">,<span class="_ _13"> </span><span class="ff1 fs0">其中<span class="_ _a"> </span><span class="ff7 fsa">a</span></span></div><div class="t m0 xf1 h13 ycb ff1 fsc fc0 sc0 ls0 ws0">″</div><div class="t m0 xf1 h11 yca ff7 fsb fc0 sc0 ls0 ws0">i<span class="_ _0"></span>j</div><div class="t m0 x90 h4 yc9 ff2 fs1 fc0 sc0 ls0 ws0">=<span class="_ _9"> </span><span class="ff7 fsa">a</span></div><div class="t m0 xf2 h13 ycb ff1 fsc fc0 sc0 ls0 ws0">′</div><div class="t m0 xf2 h11 yca ff7 fsb fc0 sc0 ls0 ws0">i<span class="_ _0"></span>j</div><div class="t m0 xf3 h14 yc9 ff8 fs0 fc0 sc0 ls0 ws0"><span class="_ _2f"></span><span class="ff7 fsa">a</span></div><div class="t m0 x19 h13 ycb ff1 fsc fc0 sc0 ls0 ws0">′</div><div class="t m0 x19 hf yca ff7 fsb fc0 sc0 ls0 ws0">i<span class="ff2 fs9">1</span></div><div class="t m0 xf4 h2 yc9 ff2 fs1 fc0 sc0 ls0 ws0">;<span class="_ _9"> </span><span class="ff7 fsa">i<span class="_ _0"></span></span>,<span class="_ _c"> </span><span class="ff7 fsa">j<span class="_ _14"> </span></span>=<span class="_ _19"> </span>1,<span class="_ _1"> </span>2<span class="_ _0"></span>,<span class="_ _13"> </span><span class="ff1 fs0">…</span>,<span class="_ _13"> </span><span class="ff7 fsa">n<span class="_ _6"></span><span class="ff2 fs1">.<span class="_ _27"> </span><span class="ff1 fs0">打印输出<span class="_ _17"></span><span class="ff7 fsa">A<span class="_ _14"> </span></span>″</span></span></span></div><div class="t m0 x1d h4 y31 ff2 fs1 fc0 sc0 ls0 ws0">(</div><div class="t m0 x4c h2 yc9 ff1 fs0 fc0 sc0 ls0 ws0">打印输出<span class="_ _12"></span><span class="ff7 fsa">A<span class="_ _14"> </span></span>″<span class="_ _2d"></span><span class="ff2 fs1">,<span class="_ _f"> </span><span class="ff1 fs0">也是为了给判断</span></span></div><div class="t m0 x2 h2 ycc ff1 fs0 fc0 sc0 ls0 ws0">者在后面选择调整元素时提供<span class="_ _8"></span>参考</div><div class="t m0 xf2 h4 ycd ff2 fs1 fc0 sc0 ls0 ws0">)</div><div class="t m0 xce h4 ycc ff2 fs1 fc0 sc0 ls0 ws0">.</div><div class="t m0 x45 h2 yce ff7 fsa fc0 sc0 ls0 ws0">A<span class="_ _14"> </span><span class="ff1 fs0">″<span class="_ _25"></span><span class="ff2 fs1">=</span></span></div><div class="t m0 xa8 h4 ycf ff2 fs1 fc0 sc0 ls0 ws0">1<span class="_ _2b"> </span><span class="ff7 fsa">a</span></div><div class="t m0 x6f h13 yd0 ff1 fsc fc0 sc0 ls0 ws0">′</div><div class="t m0 x6f hf yd1 ff2 fs9 fc0 sc0 ls0 ws0">12</div><div class="t m0 xf5 h14 ycf ff8 fs0 fc0 sc0 ls0 ws0"><span class="_ _2f"></span><span class="ff7 fsa">a</span></div><div class="t m0 xf6 h13 yd0 ff1 fsc fc0 sc0 ls0 ws0">′</div><div class="t m0 xf6 hf yd1 ff2 fs9 fc0 sc0 ls0 ws0">11</div><div class="t m0 xf7 h12 ycf ff7 fsa fc0 sc0 ls0 ws0">a</div><div class="t m0 xf8 h13 yd0 ff1 fsc fc0 sc0 ls0 ws0">′</div><div class="t m0 xf8 hf yd1 ff2 fs9 fc0 sc0 ls0 ws0">13</div><div class="t m0 x10 h14 ycf ff8 fs0 fc0 sc0 ls0 ws0"><span class="_ _2f"></span><span class="ff7 fsa">a</span></div><div class="t m0 xf9 h13 yd0 ff1 fsc fc0 sc0 ls0 ws0">′</div><div class="t m0 xf9 hf yd1 ff2 fs9 fc0 sc0 ls0 ws0">11</div><div class="t m0 xfa h2 ycf ff1 fs0 fc0 sc0 ls0 ws0">…<span class="_"> </span><span class="ff7 fsa">a</span></div><div class="t m0 x89 h13 yd0 ff1 fsc fc0 sc0 ls0 ws0">′</div><div class="t m0 x89 hf yd1 ff2 fs9 fc0 sc0 ls0 ws0">1<span class="ff7 fsb">n</span></div><div class="t m0 xfb h14 ycf ff8 fs0 fc0 sc0 ls0 ws0"><span class="_ _2f"></span><span class="ff7 fsa">a</span></div><div class="t m0 x8b h13 yd0 ff1 fsc fc0 sc0 ls0 ws0">′</div><div class="t m0 x8b hf yd1 ff2 fs9 fc0 sc0 ls0 ws0">11</div><div class="t m0 xa8 h4 yd2 ff2 fs1 fc0 sc0 ls0 ws0">1<span class="_ _2b"> </span><span class="ff7 fsa">a</span></div><div class="t m0 x6f h13 yd3 ff1 fsc fc0 sc0 ls0 ws0">′</div><div class="t m0 x6f hf yd4 ff2 fs9 fc0 sc0 ls0 ws0">22</div><div class="t m0 xf5 h14 yd2 ff8 fs0 fc0 sc0 ls0 ws0"><span class="_ _2f"></span><span class="ff7 fsa">a</span></div><div class="t m0 xf6 h13 yd3 ff1 fsc fc0 sc0 ls0 ws0">′</div><div class="t m0 xf6 hf yd4 ff2 fs9 fc0 sc0 ls0 ws0">21</div><div class="t m0 xf7 h12 yd2 ff7 fsa fc0 sc0 ls0 ws0">a</div><div class="t m0 xf8 h13 yd3 ff1 fsc fc0 sc0 ls0 ws0">′</div><div class="t m0 xf8 hf yd4 ff2 fs9 fc0 sc0 ls0 ws0">23</div><div class="t m0 x10 h14 yd2 ff8 fs0 fc0 sc0 ls0 ws0"><span class="_ _2f"></span><span class="ff7 fsa">a</span></div><div class="t m0 xf9 h13 yd3 ff1 fsc fc0 sc0 ls0 ws0">′</div><div class="t m0 xf9 hf yd4 ff2 fs9 fc0 sc0 ls0 ws0">21</div><div class="t m0 xfa h2 yd2 ff1 fs0 fc0 sc0 ls0 ws0">…<span class="_"> </span><span class="ff7 fsa">a</span></div><div class="t m0 x89 h13 yd3 ff1 fsc fc0 sc0 ls0 ws0">′</div><div class="t m0 x89 hf yd4 ff2 fs9 fc0 sc0 ls0 ws0">2<span class="ff7 fsb">n</span></div><div class="t m0 xfb h14 yd2 ff8 fs0 fc0 sc0 ls0 ws0"><span class="_ _2f"></span><span class="ff7 fsa">a</span></div><div class="t m0 x8b h13 yd3 ff1 fsc fc0 sc0 ls0 ws0">′</div><div class="t m0 x8b hf yd4 ff2 fs9 fc0 sc0 ls0 ws0">21</div><div class="t m0 xa8 h4 yd5 ff2 fs1 fc0 sc0 ls0 ws0">1<span class="_ _2b"> </span><span class="ff7 fsa">a</span></div><div class="t m0 x6f h13 yd6 ff1 fsc fc0 sc0 ls0 ws0">′</div><div class="t m0 x6f hf yd7 ff2 fs9 fc0 sc0 ls0 ws0">32</div><div class="t m0 xf5 h14 yd5 ff8 fs0 fc0 sc0 ls0 ws0"><span class="_ _2f"></span><span class="ff7 fsa">a</span></div><div class="t m0 xf6 h13 yd6 ff1 fsc fc0 sc0 ls0 ws0">′</div><div class="t m0 xf6 hf yd7 ff2 fs9 fc0 sc0 ls0 ws0">31</div><div class="t m0 xf7 h12 yd5 ff7 fsa fc0 sc0 ls0 ws0">a</div><div class="t m0 xf8 h13 yd6 ff1 fsc fc0 sc0 ls0 ws0">′</div><div class="t m0 xf8 hf yd7 ff2 fs9 fc0 sc0 ls0 ws0">33</div><div class="t m0 x10 h14 yd5 ff8 fs0 fc0 sc0 ls0 ws0"><span class="_ _2f"></span><span class="ff7 fsa">a</span></div><div class="t m0 xf9 h13 yd6 ff1 fsc fc0 sc0 ls0 ws0">′</div><div class="t m0 xf9 hf yd7 ff2 fs9 fc0 sc0 ls0 ws0">31</div><div class="t m0 xfa h2 yd5 ff1 fs0 fc0 sc0 ls0 ws0">…<span class="_"> </span><span class="ff7 fsa">a</span></div><div class="t m0 x89 h13 yd6 ff1 fsc fc0 sc0 ls0 ws0">′</div><div class="t m0 x89 hf yd7 ff2 fs9 fc0 sc0 ls0 ws0">3<span class="ff7 fsb">n</span></div><div class="t m0 xfb h14 yd5 ff8 fs0 fc0 sc0 ls0 ws0"><span class="_ _2f"></span><span class="ff7 fsa">a</span></div><div class="t m0 x8b h13 yd6 ff1 fsc fc0 sc0 ls0 ws0">′</div><div class="t m0 x8b hf yd7 ff2 fs9 fc0 sc0 ls0 ws0">31</div><div class="t m0 xfa h14 yd8 ff8 fs0 fc0 sc0 ls0 ws0"></div><div class="t m0 xa8 h4 yd9 ff2 fs1 fc0 sc0 ls0 ws0">1<span class="_ _2b"> </span><span class="ff7 fsa">a</span></div><div class="t m0 x6f h13 yda ff1 fsc fc0 sc0 ls0 ws0">′</div><div class="t m0 x6f hf ydb ff7 fsb fc0 sc0 ls0 ws0">n<span class="_ _0"></span><span class="ff2 fs9">2</span></div><div class="t m0 xf5 h14 yd9 ff8 fs0 fc0 sc0 ls0 ws0"><span class="_ _2f"></span><span class="ff7 fsa">a</span></div><div class="t m0 xf6 h13 yda ff1 fsc fc0 sc0 ls0 ws0">′</div><div class="t m0 xf6 hf ydb ff7 fsb fc0 sc0 ls0 ws0">n<span class="_ _0"></span><span class="ff2 fs9">1</span></div><div class="t m0 xf7 h12 yd9 ff7 fsa fc0 sc0 ls0 ws0">a</div><div class="t m0 xf8 h13 yda ff1 fsc fc0 sc0 ls0 ws0">′</div><div class="t m0 xf8 hf ydb ff7 fsb fc0 sc0 ls0 ws0">n<span class="_ _0"></span><span class="ff2 fs9">3</span></div><div class="t m0 x10 h14 yd9 ff8 fs0 fc0 sc0 ls0 ws0"><span class="_ _2f"></span><span class="ff7 fsa">a</span></div><div class="t m0 xf9 h13 yda ff1 fsc fc0 sc0 ls0 ws0">′</div><div class="t m0 xf9 hf ydb ff7 fsb fc0 sc0 ls0 ws0">n<span class="_ _0"></span><span class="ff2 fs9">1</span></div><div class="t m0 xfa h2 yd9 ff1 fs0 fc0 sc0 ls0 ws0">…<span class="_"> </span><span class="ff7 fsa">a</span></div><div class="t m0 x89 h13 yda ff1 fsc fc0 sc0 ls0 ws0">′</div><div class="t m0 x89 h11 ydb ff7 fsb fc0 sc0 ls0 ws0">nn</div><div class="t m0 xfb h14 yd9 ff8 fs0 fc0 sc0 ls0 ws0"><span class="_ _2f"></span><span class="ff7 fsa">a</span></div><div class="t m0 x8b h13 yda ff1 fsc fc0 sc0 ls0 ws0">′</div><div class="t m0 x8b hf ydb ff7 fsb fc0 sc0 ls0 ws0">n<span class="_ _0"></span><span class="ff2 fs9">1</span></div><div class="t m0 x2 h2 ydc ff1 fs0 fc0 sc0 ls0 ws0">  <span class="ff3">注<span class="_ _a"> </span><span class="ff5 fs1">1<span class="_ _0"></span></span></span> <span class="_ _17"></span><span class="ff7 fsa">A<span class="_ _14"> </span></span>″<span class="_ _2a"></span>中除第一列元素<span class="_ _15"> </span><span class="ff7 fsa">a</span></div><div class="t m0 xa h13 ydd ff1 fsc fc0 sc0 ls0 ws0">″</div><div class="t m0 xa hf yde ff7 fsb fc0 sc0 ls0 ws0">i<span class="ff2 fs9">1</span></div><div class="t m0 xb8 h2 ydc ff1 fs0 fc0 sc0 ls0 ws0">均为<span class="_ _15"> </span><span class="ff2 fs1">1<span class="_ _18"> </span></span>之外<span class="ff2 fs1">,<span class="_ _a"> </span></span>其它各列的元素<span class="_ _11"></span><span class="ff7 fsa">a</span></div><div class="t m0 xfc h13 ydd ff1 fsc fc0 sc0 ls0 ws0">″</div><div class="t m0 xfc h11 yde ff7 fsb fc0 sc0 ls0 ws0">i<span class="_ _0"></span>j</div><div class="t m0 xfd h2 ydc ff1 fs0 fc0 sc0 ls0 ws0">要么大于<span class="_ _15"> </span><span class="ff2 fs1">1<span class="_ _0"></span>,<span class="_ _a"> </span></span>要么小于<span class="_ _15"> </span><span class="ff2 fs1">1<span class="_ _0"></span>,<span class="_ _1"> </span></span>要么等于<span class="_ _15"> </span><span class="ff2 fs1">1<span class="_ _b"></span>.<span class="_ _16"> </span><span class="ff1 fs0">并</span></span></div><div class="t m0 x2 h2 ydf ff1 fs0 fc0 sc0 ls0 ws0">且<span class="_ _7"> </span><span class="ff7 fsa">a</span></div><div class="t m0 x32 h13 ye0 ff1 fsc fc0 sc0 ls0 ws0">″</div><div class="t m0 xcf hf ye1 ff7 fsb fc0 sc0 ls0 ws0">i<span class="ff2 fs9">1</span></div><div class="t m0 x3f h2 ydf ff1 fs0 fc0 sc0 ls0 ws0">的大小不同<span class="ff2 fs1">,<span class="_"> </span></span>含义也不同<span class="_ _1f"></span><span class="ff2 fs1">.<span class="_ _1e"> </span><span class="ff1 fs0">说明如下<span class="_ _4"></span><span class="ff2 fs1">:</span></span></span></div><div class="t m0 x39 h2 ye2 ff1 fs0 fc0 sc0 ls0 ws0">元素<span class="_ _a"> </span><span class="ff7 fsa">a</span></div><div class="t m0 xdc h13 ye3 ff1 fsc fc0 sc0 ls0 ws0">″</div><div class="t m0 xdc h11 ye4 ff7 fsb fc0 sc0 ls0 ws0">i<span class="_ _0"></span>j</div><div class="t m0 xa2 h2 ye2 ff1 fs0 fc0 sc0 ls0 ws0">大于<span class="_ _18"> </span><span class="ff2 fs1">1<span class="_ _0"></span>,<span class="_ _1"> </span></span>说明在判断矩阵<span class="_ _0"></span><span class="ff7 fsa">A<span class="_ _13"> </span></span>中<span class="ff2 fs1">,<span class="_"> </span></span>与第一列</div><div class="t m0 xfe h4 ye5 ff2 fs1 fc0 sc0 ls0 ws0">(</div><div class="t m0 xff h2 ye2 ff1 fs0 fc0 sc0 ls0 ws0">参照列</div><div class="t m0 x67 h4 ye5 ff2 fs1 fc0 sc0 ls0 ws0">)</div><div class="t m0 xdf h2 ye2 ff1 fs0 fc0 sc0 ls0 ws0">中的<span class="_ _15"> </span><span class="ff7 fsa">a</span></div><div class="t m0 x1c hf ye4 ff7 fsb fc0 sc0 ls0 ws0">i<span class="ff2 fs9">1</span></div><div class="t m0 x8b h2 ye2 ff1 fs0 fc0 sc0 ls0 ws0">相比<span class="ff2 fs1">,<span class="_"> </span></span>第<span class="_ _a"> </span><span class="ff7 fsa">i<span class="_ _a"> </span></span>个被比较对象与第<span class="_ _a"> </span><span class="ff7 fsa">j<span class="_ _14"> </span></span>个被</div><div class="t m0 x2 h2 ye6 ff1 fs0 fc0 sc0 ls0 ws0">比对象的重要性之比的值<span class="_ _15"> </span><span class="ff7 fsa">a</span></div><div class="t m0 x8f h11 ye7 ff7 fsb fc0 sc0 ls0 ws0">i<span class="_ _0"></span>j</div><div class="t m0 x5c h2 ye6 ff1 fs0 fc0 sc0 ls0 ws0">在第<span class="_ _a"> </span><span class="ff7 fsa">j<span class="_ _14"> </span></span>列中取得过大<span class="ff2 fs1">,<span class="_"> </span></span>以致于第<span class="_ _a"> </span><span class="ff7 fsa">i<span class="_"> </span></span>个被比较对象在第<span class="_ _a"> </span><span class="ff7 fsa">j<span class="_ _14"> </span></span>列中的权重<span class="_ _0"></span><span class="ff7 fsa">w</span></div><div class="t m0 x100 h11 ye8 ff7 fsb fc0 sc0 ls0 ws0">j</div><div class="t m0 x100 h11 ye7 ff7 fsb fc0 sc0 ls0 ws0">i</div><div class="t m0 xe4 h4 ye9 ff2 fs1 fc0 sc0 ls0 ws0">(</div><div class="t m0 xc8 h2 ye6 ff1 fs0 fc0 sc0 ls0 ws0">判断矩</div><div class="t m0 x2 h2 yea ff1 fs0 fc0 sc0 ls0 ws0">阵完全一致时<span class="ff2 fs1">,<span class="_ _17"></span><span class="ff7 fsa">w</span></span></div><div class="t m0 x2d h11 yeb ff7 fsb fc0 sc0 ls0 ws0">j</div><div class="t m0 x2d h11 yec ff7 fsb fc0 sc0 ls0 ws0">i</div><div class="t m0 x17 h2 yea ff1 fs0 fc0 sc0 ls0 ws0">就等于第<span class="_ _a"> </span><span class="ff7 fsa">i<span class="_"> </span></span>个被比较对象的权重<span class="_ _12"></span><span class="ff7 fsa">w</span></div><div class="t m0 xba h11 yec ff7 fsb fc0 sc0 ls0 ws0">i</div><div class="t m0 x26 h4 yed ff2 fs1 fc0 sc0 ls0 ws0">)</div><div class="t m0 x27 h2 yee ff1 fs0 fc0 sc0 ls0 ws0">大于第<span class="_ _a"> </span><span class="ff7 fsa">i</span></div><div class="t m0 x68 h2 yea ff1 fs0 fc0 sc0 ls0 ws0">个被比较对象在第一列中的权<span class="_ _8"></span>重<span class="_ _12"></span><span class="ff7 fsa">w</span></div><div class="t m0 xd2 hf yeb ff2 fs9 fc0 sc0 ls0 ws0">1</div><div class="t m0 xd2 h11 yec ff7 fsb fc0 sc0 ls0 ws0">i</div><div class="t m0 x101 h4 yed ff2 fs1 fc0 sc0 ls0 ws0">(</div><div class="t m0 x95 h2 yee ff1 fs0 fc0 sc0 ls0 ws0">判断</div><div class="t m0 x2 h2 yef ff1 fs0 fc0 sc0 ls0 ws0">矩阵完全一致时<span class="ff2 fs1">,<span class="_ _17"></span><span class="ff7 fsa">w</span></span></div><div class="t m0 x36 hf yf0 ff2 fs9 fc0 sc0 ls0 ws0">1</div><div class="t m0 x36 h11 yf1 ff7 fsb fc0 sc0 ls0 ws0">i</div><div class="t m0 x102 h2 yef ff1 fs0 fc0 sc0 ls0 ws0">也等于<span class="_ _1c"></span><span class="ff7 fsa">w</span></div><div class="t m0 x33 h11 yf1 ff7 fsb fc0 sc0 ls0 ws0">i</div><div class="t m0 x103 h4 yf2 ff2 fs1 fc0 sc0 ls0 ws0">)</div><div class="t m0 x104 h2 yf3 ff2 fs1 fc0 sc0 ls0 ws0">,<span class="_"> </span><span class="ff1 fs0">因此</span>,<span class="_ _1"> </span><span class="ff1 fs0">为了使第<span class="_ _15"> </span><span class="ff7 fsa">i</span></span></div><div class="t m0 x105 h2 yef ff1 fs0 fc0 sc0 ls0 ws0">个被比较对象在各列的权重保<span class="_ _8"></span>持大至相等<span class="ff2 fs1">,<span class="_"> </span><span class="ff7 fsa">a</span></span></div><div class="t m0 x41 h11 yf1 ff7 fsb fc0 sc0 ls0 ws0">i<span class="_ _0"></span>j</div><div class="t m0 x3e h2 yef ff1 fs0 fc0 sc0 ls0 ws0">应该减小<span class="_ _1f"></span><span class="ff2 fs1">.</span></div><div class="t m0 x106 h4 y87 ff2 fs1 fc0 sc0 ls0 ws0">6<span class="_ _2c"></span>8</div><div class="t m0 x14 h9 y88 ff1 fs6 fc0 sc0 ls0 ws0">系统工程理论与实践<span class="_ _30"> </span><span class="ff2 fs5">20<span class="_ _0"></span>0<span class="_ _0"></span>4<span class="_"> </span></span>年<span class="_ _a"> </span><span class="ff2 fs5">6<span class="_"> </span></span>月</div><div class="t m0 x44 h10 y3b ff6 fs6 fc1 sc0 ls0 ws0">© 1995-2005 Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved.</div></div><div class="pi" data-data='{"ctm":[1.733078,0.000000,0.000000,1.733078,0.000000,0.000000]}'></div></div>