ZIPR语言是一种广泛使用的统计编程语言和软件环境,非常适合进行数据分析、数据可视化以及统计建模 下面我将通过一个简单的R语言数据分析 12.92KB

2401_87232220

资源文件列表:

r语言数据分析案例.zip 大约有1个文件
  1. r语言数据分析案例.docx 15.3KB

资源介绍:

r语言数据分析案例R语言是一种广泛使用的统计编程语言和软件环境,非常适合进行数据分析、数据可视化以及统计建模。下面我将通过一个简单的R语言数据分析案例来展示其基本用法。 案例:分析某城市天气数据 假设我们有一组关于某城市每日天气的数据集,包括日期、温度、湿度、风速等变量。我们的目标是分析这些变量之间的关系,比如温度和湿度的相关性,以及风速对温度的影响。 步骤 1: 数据准备 首先,我们需要加载数据。这里我们假设数据已经以CSV格式存储,并且可以通过read.csv函数读取。 r # 加载数据 weather_data <- read.csv("weather_data.csv", stringsAsFactors = FALSE) # 查看数据结构 head(weather_data) str(weather_data) 步骤 2:
<link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/css/base.min.css" rel="stylesheet"/><link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/css/fancy.min.css" rel="stylesheet"/><link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/89739978/raw.css" rel="stylesheet"/><div id="sidebar" style="display: none"><div id="outline"></div></div><div class="pf w0 h0" data-page-no="1" id="pf1"><div class="pc pc1 w0 h0"><img alt="" class="bi x0 y0 w1 h1" src="/image.php?url=https://csdnimg.cn/release/download_crawler_static/89739978/bg1.jpg"/><div class="t m0 x1 h2 y1 ff1 fs0 fc0 sc0 ls0 ws0">R<span class="_"> </span><span class="ff2">语言是一种广泛使用的统计编程语言和软件环境,非常适合进行数据分析、数据可</span></div><div class="t m0 x1 h2 y2 ff2 fs0 fc0 sc0 ls0 ws0">视化<span class="_ _0"></span>以及<span class="_ _0"></span>统计<span class="_ _0"></span>建模<span class="_ _0"></span>。下<span class="_ _0"></span>面我<span class="_ _0"></span>将通<span class="_ _0"></span>过一<span class="_ _0"></span>个简<span class="_ _0"></span>单的<span class="_ _1"> </span><span class="ff1">R<span class="_"> </span></span>语言<span class="_ _0"></span>数据<span class="_ _0"></span>分析<span class="_ _0"></span>案例<span class="_ _0"></span>来展<span class="_ _0"></span>示其<span class="_ _0"></span>基本<span class="_ _0"></span>用法<span class="_ _0"></span>。</div><div class="t m0 x1 h3 y3 ff3 fs1 fc0 sc1 ls0 ws0">案例:分析<span class="_ _0"></span>某城市天气<span class="_ _0"></span>数据</div><div class="t m0 x1 h2 y4 ff2 fs0 fc0 sc0 ls0 ws0">假设<span class="_ _0"></span>我<span class="_ _0"></span>们有<span class="_ _0"></span>一组<span class="_ _0"></span>关<span class="_ _0"></span>于某<span class="_ _0"></span>城<span class="_ _0"></span>市每<span class="_ _0"></span>日天<span class="_ _0"></span>气<span class="_ _0"></span>的数<span class="_ _0"></span>据<span class="_ _0"></span>集,<span class="_ _0"></span>包<span class="_ _0"></span>括日<span class="_ _0"></span>期、<span class="_ _0"></span>温<span class="_ _0"></span>度、<span class="_ _0"></span>湿<span class="_ _0"></span>度、<span class="_ _0"></span>风<span class="_ _0"></span>速等<span class="_ _0"></span>变量<span class="_ _0"></span>。</div><div class="t m0 x1 h2 y5 ff2 fs0 fc0 sc0 ls0 ws0">我们的目标是分析这些变量之间的关系,比如温度和湿度的相关性,以及风速对温度</div><div class="t m0 x1 h2 y6 ff2 fs0 fc0 sc0 ls0 ws0">的影响。</div><div class="t m0 x1 h4 y7 ff3 fs2 fc0 sc1 ls0 ws0">步骤<span class="ff4 sc0"> 1: </span>数据准<span class="_ _0"></span>备</div><div class="t m0 x1 h2 y8 ff2 fs0 fc0 sc0 ls0 ws0">首先,我们需要加载数据。这里我们假设数据已经以<span class="_ _2"> </span><span class="ff1">CSV<span class="_"> </span></span>格式存储,并且可以通过</div><div class="t m0 x1 h2 y9 ff5 fs3 fc0 sc0 ls0 ws0">read.csv<span class="_ _3"> </span><span class="ff2 fs0">函数读取。</span></div><div class="t m0 x1 h5 ya ff6 fs2 fc1 sc0 ls0 ws0">r</div><div class="c x2 yb w2 h6"><div class="t m0 x3 h2 yc ff7 fs0 fc2 sc0 ls0 ws0"># <span class="ff2">加载数据</span> </div></div><div class="c x2 yd w2 h7"><div class="t m0 x3 h2 ye ff7 fs0 fc3 sc0 ls0 ws0">weather_data &lt;- </div><div class="t m0 x3 h2 yf ff7 fs0 fc3 sc0 ls0 ws0">read.csv(<span class="fc4">"weather_data.csv"</span>,<span class="fc6 sc0"> </span></div><div class="t m0 x3 h2 y10 ff7 fs0 fc3 sc0 ls0 ws0">stringsAsFactors = <span class="fc5">FALSE</span>) </div></div><div class="c x2 y11 w2 h6"><div class="t m0 x3 h2 yc ff7 fs0 fc2 sc0 ls0 ws0"># <span class="ff2">查看数据结构</span> </div></div><div class="c x2 y12 w2 h6"><div class="t m0 x3 h2 yc ff7 fs0 fc3 sc0 ls0 ws0">head(weather_data) </div></div><div class="c x2 y13 w2 h6"><div class="t m0 x3 h2 yc ff7 fs0 fc3 sc0 ls0 ws0">str(weather_data)</div></div><div class="t m0 x1 h4 y14 ff3 fs2 fc0 sc1 ls0 ws0">步骤<span class="ff4 sc0"> 2: </span>数据探<span class="_ _0"></span>索</div><div class="t m0 x1 h2 y15 ff2 fs0 fc0 sc0 ls0 ws0">在进行深入分析之前,我们先对数据进行基本探索,包括描述性统计和可视化。</div><div class="t m0 x1 h5 y16 ff6 fs2 fc1 sc0 ls0 ws0">r</div><div class="c x2 y17 w3 h6"><div class="t m0 x3 h2 yc ff7 fs0 fc2 sc0 ls0 ws0"># <span class="ff2">描述性统计</span> </div></div><div class="c x2 y18 w3 h6"><div class="t m0 x3 h2 yc ff7 fs0 fc3 sc0 ls0 ws0">summary(weather_data) </div></div><div class="c x2 y19 w3 h6"><div class="t m0 x3 h2 yc ff7 fs0 fc2 sc0 ls0 ws0"># <span class="ff2">绘制温度和湿度的散点图</span> </div></div><div class="c x2 y1a w3 h8"><div class="t m0 x3 h2 y1b ff7 fs0 fc3 sc0 ls0 ws0">plot(weather_data$temperature, </div><div class="t m0 x3 h2 y1c ff7 fs0 fc3 sc0 ls0 ws0">weather_data$humidity, main = <span class="fc4">"Temperature vs </span></div><div class="t m0 x3 h2 yf ff7 fs0 fc4 sc0 ls0 ws0">Humidity"<span class="fc3">, xlab = </span>"Temperature (°C)"<span class="fc3">, ylab = </span></div><div class="t m0 x3 h2 y10 ff7 fs0 fc4 sc0 ls0 ws0">"Humidity (%)"<span class="fc3">, pch = <span class="fc5">19</span>, col = </span>"blue"<span class="fc3">) </span></div></div><div class="c x2 y1d w3 h9"><div class="t m0 x3 h2 y1e ff7 fs0 fc2 sc0 ls0 ws0"># <span class="ff2">绘制风速和温度的箱线图,观察不同风速下温度的变</span></div><div class="t m0 x3 h2 y10 ff2 fs0 fc2 sc0 ls0 ws0">化<span class="ff7"> </span></div></div><div class="c x2 y1f w3 h8"><div class="t m0 x3 h2 y1b ff7 fs0 fc3 sc0 ls0 ws0">boxplot(weather_data$temperature ~ </div><div class="t m0 x3 h2 y1c ff7 fs0 fc3 sc0 ls0 ws0">weather_data$wind_speed, main = <span class="fc4">"Temperature by </span></div><div class="t m0 x3 h2 yf ff7 fs0 fc4 sc0 ls0 ws0">Wind Speed"<span class="fc3">, xlab = </span>"Wind Speed (km/h)"<span class="fc3">, ylab = </span></div><div class="t m0 x3 h2 y10 ff7 fs0 fc4 sc0 ls0 ws0">"Temperature (°C)"<span class="fc3">, col = </span>"lightblue"<span class="fc3">)</span></div></div><div class="t m0 x1 h4 y20 ff3 fs2 fc0 sc1 ls0 ws0">步骤<span class="ff4 sc0"> 3: </span>相关性<span class="_ _0"></span>分析</div><div class="t m0 x1 h2 y21 ff2 fs0 fc0 sc0 ls0 ws0">使用相关系数矩阵来分析各变</div></div><div class="pi" data-data='{"ctm":[1.611639,0.000000,0.000000,1.611639,0.000000,0.000000]}'></div></div>
100+评论
captcha
    类型标题大小时间
    ZIPElasticsearch是一个基于Apache Lucene构建的开源分布式搜索和分析引擎,专为云计算环境设计,能够迅速且有效13.34KB7月前
    ZIPTransformer是一种深度学习模型,其最初是作为机器翻译的序列到序列模型被提出的 然而,随着研究的深入,基于Transfo14.42KB7月前
    ZIPJupyter Notebook是一款广泛使用的开源Web应用程序,它为用户提供了一个交互式计算和数据可视化的环境,特别适用于数14.08KB7月前
    ZIPProteus是英国Lab Center Electronics公司出版的EDA工具软件,是一款功能强大的电子电路仿真和物理特性13.94KB7月前
    ZIPNavicat是一款功能强大的数据库管理工具,它支持多种数据库系统,包括MySQL、Redis、Oracle、PostgreSQ13.16KB7月前
    ZIPArcGIS是由Esri(环境系统研究所)开发的一款全球领先的地理信息系统(GIS)软件 它为用户提供了一个可伸缩的、全面的GI13.17KB7月前
    ZIPHTTP(HyperText Transfer Protocol,超文本传输协议)是一种用于分布式、协作式和超媒体信息系统的应用13.37KB7月前
    ZIP《Dev C++ 最新版 5.11》48.14MB7月前