ZIPA星融合DWA的路径规划算法,可实现静态避障碍及动态避障,代码注释详细,matlab源码 174.21KB

FHsnrLqEE

资源文件列表:

星融合的路径规划.zip 大约有10个文件
  1. 1.jpg 81.33KB
  2. 2.jpg 85.68KB
  3. 3.jpg 85.83KB
  4. 星融合的路径规划算法可实现静态避障.html 4.4KB
  5. 星融合的路径规划算法可实现静态避障碍及动.txt 123B
  6. 星融合的路径规划算法技术分析文.txt 2KB
  7. 星融合的路径规划算法技术分析文章一.txt 1.83KB
  8. 标题基于融合的路径规划算法静态避.doc 2.08KB
  9. 标题星融合的路径规划算法在静态与.txt 2.77KB
  10. 标题星融合的路径规划算法在静态避障和动态避障.txt 2.28KB

资源介绍:

A星融合DWA的路径规划算法,可实现静态避障碍及动态避障,代码注释详细,matlab源码
<link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/css/base.min.css" rel="stylesheet"/><link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/css/fancy.min.css" rel="stylesheet"/><link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/89760622/raw.css" rel="stylesheet"/><div id="sidebar" style="display: none"><div id="outline"></div></div><div class="pf w0 h0" data-page-no="1" id="pf1"><div class="pc pc1 w0 h0"><img alt="" class="bi x0 y0 w1 h1" src="/image.php?url=https://csdnimg.cn/release/download_crawler_static/89760622/bg1.jpg"/><div class="t m0 x1 h2 y1 ff1 fs0 fc0 sc0 ls0 ws0">标题<span class="ff2">:</span>基于<span class="_ _0"> </span><span class="ff3">A*</span>融合<span class="_ _0"> </span><span class="ff3">DWA<span class="_ _1"> </span></span>的路径规划算法<span class="ff2">:</span>静态避障碍与动态避障</div><div class="t m0 x1 h2 y2 ff1 fs0 fc0 sc0 ls0 ws0">摘要<span class="ff2">:</span>路径规划算法在无人驾驶<span class="ff4">、</span>机器人导航等领域发挥着重要作用<span class="ff4">。</span>本文基于<span class="_ _0"> </span><span class="ff3">A*</span>算法融合<span class="_ _0"> </span><span class="ff3">DWA<span class="_ _1"> </span></span>算</div><div class="t m0 x1 h2 y3 ff1 fs0 fc0 sc0 ls0 ws0">法<span class="ff2">,</span>提出了一种能够实现静态避障碍与动态避障的路径规划算法<span class="ff4">。</span>通过详细的代码注释和提供的</div><div class="t m0 x1 h2 y4 ff3 fs0 fc0 sc0 ls0 ws0">matlab<span class="_ _1"> </span><span class="ff1">源码<span class="ff2">,</span>展示了算法的具体实现过程<span class="ff4">。</span></span></div><div class="t m0 x1 h2 y5 ff3 fs0 fc0 sc0 ls0 ws0">1.<span class="_ _2"> </span><span class="ff1">引言</span></div><div class="t m0 x2 h2 y6 ff1 fs0 fc0 sc0 ls0 ws0">随着人工智能技术的不断发展<span class="ff2">,</span>路径规划在无人驾驶<span class="ff4">、</span>机器人导航等领域越发重要<span class="ff4">。</span>传统的路径</div><div class="t m0 x1 h2 y7 ff1 fs0 fc0 sc0 ls0 ws0">规划算法往往只能考虑静态避障碍物<span class="ff2">,</span>无法适应动态环境的变化<span class="ff4">。</span>本文旨在提出一种综合考虑静态与</div><div class="t m0 x1 h2 y8 ff1 fs0 fc0 sc0 ls0 ws0">动态避障的路径规划算法<span class="ff2">,</span>以解决实际场景中的路径规划问题<span class="ff4">。</span></div><div class="t m0 x1 h2 y9 ff3 fs0 fc0 sc0 ls0 ws0">2.<span class="_ _2"> </span>A*<span class="ff1">算法</span></div><div class="t m0 x2 h2 ya ff3 fs0 fc0 sc0 ls0 ws0">A*<span class="ff1">算法是一种基于启发式搜索的路径规划算法<span class="ff2">,</span>通过估计到目标点的代价函数来选择最佳路径<span class="ff4">。</span></span></div><div class="t m0 x1 h2 yb ff1 fs0 fc0 sc0 ls0 ws0">在本文中<span class="ff2">,</span>我们采用<span class="_ _0"> </span><span class="ff3">A*</span>算法作为基础<span class="ff2">,</span>并对其进行了一定的改进<span class="ff2">,</span>使其能够适应动态环境的变化<span class="ff4">。</span></div><div class="t m0 x1 h2 yc ff3 fs0 fc0 sc0 ls0 ws0">3.<span class="_ _2"> </span>DWA<span class="_ _1"> </span><span class="ff1">算法</span></div><div class="t m0 x2 h2 yd ff3 fs0 fc0 sc0 ls0 ws0">DWA<span class="ff2">(</span>Dynamic Window Approach<span class="ff2">)<span class="ff1">算法是一种基于动态窗口的路径规划算法</span>,<span class="ff1">能够根据当前</span></span></div><div class="t m0 x1 h2 ye ff1 fs0 fc0 sc0 ls0 ws0">机器人状态和环境信息动态调整速度和角速度以实现避障<span class="ff4">。</span>我们将<span class="_ _0"> </span><span class="ff3">DWA<span class="_ _1"> </span></span>算法与<span class="_ _0"> </span><span class="ff3">A*</span>算法融合<span class="ff2">,</span>以达到</div><div class="t m0 x1 h2 yf ff1 fs0 fc0 sc0 ls0 ws0">综合考虑静态与动态避障的目的<span class="ff4">。</span></div><div class="t m0 x1 h2 y10 ff3 fs0 fc0 sc0 ls0 ws0">4.<span class="_ _2"> </span><span class="ff1">路径规划算法设计与实现</span></div><div class="t m0 x2 h2 y11 ff3 fs0 fc0 sc0 ls0 ws0">4.1.<span class="_"> </span><span class="ff1">静态避障碍</span></div><div class="t m0 x3 h2 y12 ff1 fs0 fc0 sc0 ls0 ws0">静态避障碍是指在规划过程中<span class="ff2">,</span>遇到不会移动的障碍物<span class="ff4">。</span>我们通过<span class="_ _0"> </span><span class="ff3">A*</span>算法来进行静态避障</div><div class="t m0 x1 h2 y13 ff1 fs0 fc0 sc0 ls0 ws0">碍的路径规划<span class="ff2">,</span>具体实现过程在提供的<span class="_ _0"> </span><span class="ff3">matlab<span class="_ _1"> </span></span>源码中展示<span class="ff4">。</span></div><div class="t m0 x2 h2 y14 ff3 fs0 fc0 sc0 ls0 ws0">4.2.<span class="_"> </span><span class="ff1">动态避障碍</span></div><div class="t m0 x3 h2 y15 ff1 fs0 fc0 sc0 ls0 ws0">动态避障碍是指在规划过程中<span class="ff2">,</span>遇到会移动的障碍物<span class="ff4">。</span>我们通过融合<span class="_ _0"> </span><span class="ff3">DWA<span class="_ _1"> </span></span>算法<span class="ff2">,</span>实现了对动</div><div class="t m0 x1 h2 y16 ff1 fs0 fc0 sc0 ls0 ws0">态避障碍的路径规划<span class="ff4">。</span>具体实现过程包括对动态障碍物的检测与预测<span class="ff2">,</span>并结合<span class="_ _0"> </span><span class="ff3">DWA<span class="_ _1"> </span></span>算法进行速度和角</div><div class="t m0 x1 h2 y17 ff1 fs0 fc0 sc0 ls0 ws0">速度调整<span class="ff4">。</span></div><div class="t m0 x2 h2 y18 ff3 fs0 fc0 sc0 ls0 ws0">4.3.<span class="_"> </span><span class="ff1">路径规划效果评估</span></div><div class="t m0 x3 h2 y19 ff1 fs0 fc0 sc0 ls0 ws0">我们在不同场景下进行了路径规划的实验<span class="ff2">,</span>并对结果进行了评估<span class="ff4">。</span>实验结果表明<span class="ff2">,</span>基于<span class="_ _0"> </span><span class="ff3">A*</span></div><div class="t m0 x1 h2 y1a ff1 fs0 fc0 sc0 ls0 ws0">融合<span class="_ _0"> </span><span class="ff3">DWA<span class="_ _1"> </span></span>的路径规划算法能够有效地规避静态和动态障碍物<span class="ff2">,</span>实现了精确的路径规划<span class="ff4">。</span></div><div class="t m0 x1 h2 y1b ff3 fs0 fc0 sc0 ls0 ws0">5.<span class="_ _2"> </span><span class="ff1">结论</span></div><div class="t m0 x2 h2 y1c ff1 fs0 fc0 sc0 ls0 ws0">本文基于<span class="_ _0"> </span><span class="ff3">A*</span>算法融合<span class="_ _0"> </span><span class="ff3">DWA<span class="_ _1"> </span></span>算法<span class="ff2">,</span>提出了一种综合考虑静态与动态避障的路径规划算法<span class="ff4">。</span>通过实</div><div class="t m0 x1 h2 y1d ff1 fs0 fc0 sc0 ls0 ws0">验验证<span class="ff2">,</span>该算法能够高效地规避静态和动态障碍物<span class="ff2">,</span>提供精确的路径规划结果<span class="ff4">。</span>未来<span class="ff2">,</span>我们将进一步</div><div class="t m0 x1 h2 y1e ff1 fs0 fc0 sc0 ls0 ws0">优化算法<span class="ff2">,</span>实现更加智能化的路径规划<span class="ff4">。</span></div></div><div class="pi" data-data='{"ctm":[1.568627,0.000000,0.000000,1.568627,0.000000,0.000000]}'></div></div>
100+评论
captcha
    类型标题大小时间
    ZIP永磁同步电机神经网络自抗扰控制,附带编程涉及到的公式文档,方便理解,模型顺利运行,效果好,位置电流双闭环采用二阶自抗扰控制,永磁195.31KB7月前
    ZIPmatlab:双或三方演化博弈,lotka-Volterra 1.双方演化博弈:代分析稳定点分析,代绘制相位图,matlab仿真864.67KB7月前
    ZIPomron欧姆龙NJ NX程序全自动锂电池二封机,主站NJ501-1400+威纶通触摸屏 整机采用EtherCAT总线网络节5.67MB7月前
    ZIPSTM32+AD7124+热电偶方案+Pt100冷端补偿解析工程源码,源码包含Pt100、NTC热敏、热电偶处理驱动源码,支持2.76MB7月前
    ZIPQT sqldriver/MySQL驱动qsqlmysql.dll MSVC版编译工程目录(含编译脚本)19.15MB7月前
    ZIP台达AS系列PLC modbus TCP网口上位机通信,项目现场使用设备的C#源代码,监控设备每月每天的生产数据并生成Excel551.83KB7月前
    ZIPcode-04.zip3.97KB7月前
    ZIP基于NMPC(非线性模型预测控制算法)轨迹跟踪与避障控制算法研究仅供学习算法使用这段代码是一个用于无人车路径跟踪的程序 下面630.8KB7月前