一阶低通数字滤波器定点补偿算法C语言函数这函数可以实现一阶低通数字滤波器定点运算结果和浮点结果完美对应,不会出现精度损失问题

SZavruyTZIP一阶低通数字滤波器定点补偿算法语.zip  358.53KB

资源文件列表:

ZIP 一阶低通数字滤波器定点补偿算法语.zip 大约有11个文件
  1. 1.jpg 116.86KB
  2. 2.jpg 114.46KB
  3. 3.jpg 122.05KB
  4. 一阶低通数字滤波器定点补偿算法语言函.html 4.59KB
  5. 一阶低通数字滤波器定点补偿算法语言函.txt 176B
  6. 一阶低通数字滤波器定点补偿算法语言函数解析一.txt 2.16KB
  7. 一阶低通数字滤波器定点补偿算法语言函数详解.txt 2.22KB
  8. 一阶低通数字滤波器定点补偿算法语言函数详解一背.txt 1.99KB
  9. 一阶低通数字滤波器是数字信号处理中常.txt 1.56KB
  10. 一阶低通数字滤波器是数字信号处理中常用的一种.txt 2.29KB
  11. 一阶低通数字滤波器简称是一种常用的信.doc 2.12KB

资源介绍:

一阶低通数字滤波器定点补偿算法C语言函数 这函数可以实现一阶低通数字滤波器定点运算结果和浮点结果完美对应,不会出现精度损失问题。

<link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/css/base.min.css" rel="stylesheet"/><link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/css/fancy.min.css" rel="stylesheet"/><link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/89867470/raw.css" rel="stylesheet"/><div id="sidebar" style="display: none"><div id="outline"></div></div><div class="pf w0 h0" data-page-no="1" id="pf1"><div class="pc pc1 w0 h0"><img alt="" class="bi x0 y0 w1 h1" src="/image.php?url=https://csdnimg.cn/release/download_crawler_static/89867470/bg1.jpg"/><div class="t m0 x1 h2 y1 ff1 fs0 fc0 sc0 ls0 ws0">一阶低通数字滤波器<span class="ff2">(<span class="ff3">First-order Low-pass Digital Filter</span>,</span>简称<span class="_ _0"> </span><span class="ff3">FOLPDF<span class="ff2">)</span></span>是一种常用</div><div class="t m0 x1 h2 y2 ff1 fs0 fc0 sc0 ls0 ws0">的信号处理算法<span class="ff2">,</span>可以实现对信号的滤波和去噪<span class="ff4">。</span>在数字信号处理中<span class="ff2">,</span>由于硬件资源有限或者特定应</div><div class="t m0 x1 h2 y3 ff1 fs0 fc0 sc0 ls0 ws0">用的需求<span class="ff2">,</span>往往需要使用定点数表示来进行计算<span class="ff2">,</span>而不是浮点数<span class="ff4">。</span>然而<span class="ff2">,</span>定点数计算存在精度损失的</div><div class="t m0 x1 h2 y4 ff1 fs0 fc0 sc0 ls0 ws0">问题<span class="ff2">,</span>导致滤波结果与浮点数计算结果不完全对应<span class="ff4">。</span>本文将介绍一种<span class="_ _0"> </span><span class="ff3">C<span class="_ _1"> </span></span>语言函数<span class="ff2">,</span>该函数可以实现一</div><div class="t m0 x1 h2 y5 ff1 fs0 fc0 sc0 ls0 ws0">阶低通数字滤波器定点运算结果和浮点结果完美对应<span class="ff2">,</span>解决了精度损失的问题<span class="ff4">。</span></div><div class="t m0 x1 h2 y6 ff1 fs0 fc0 sc0 ls0 ws0">首先<span class="ff2">,</span>我们来了解一阶低通数字滤波器的原理<span class="ff4">。</span>该滤波器是一种基础的滤波器结构<span class="ff2">,</span>用于去除信号中</div><div class="t m0 x1 h2 y7 ff1 fs0 fc0 sc0 ls0 ws0">的高频成分<span class="ff2">,</span>保留信号的低频成分<span class="ff4">。</span>其差分方程描述如下<span class="ff2">:</span></div><div class="t m0 x1 h3 y8 ff3 fs0 fc0 sc0 ls0 ws0">y(n) = b0 * x(n) + b1 * x(n-1) - a1 * y(n-1)</div><div class="t m0 x1 h2 y9 ff1 fs0 fc0 sc0 ls0 ws0">其中<span class="ff2">,<span class="ff3">y(n)</span></span>表示滤波器的输出信号<span class="ff2">,<span class="ff3">x(n)</span></span>表示滤波器的输入信号<span class="ff4">。<span class="ff3">b0</span>、<span class="ff3">b1</span>、<span class="ff3">a1<span class="_ _1"> </span></span></span>分别为滤波器系数</div><div class="t m0 x1 h2 ya ff2 fs0 fc0 sc0 ls0 ws0">,<span class="ff1">需要根据滤波器的截止频率和采样率进行选择和计算<span class="ff4">。</span></span></div><div class="t m0 x1 h2 yb ff1 fs0 fc0 sc0 ls0 ws0">在浮点数计算中<span class="ff2">,</span>可以直接使用上述差分方程进行计算<span class="ff2">,</span>并得到滤波器的输出结果<span class="ff4">。</span>然而<span class="ff2">,</span>由于定点</div><div class="t m0 x1 h2 yc ff1 fs0 fc0 sc0 ls0 ws0">数的有限精度表示<span class="ff2">,</span>直接使用差分方程进行定点数计算会导致精度损失<span class="ff4">。</span>为了解决这个问题<span class="ff2">,</span>我们可</div><div class="t m0 x1 h2 yd ff1 fs0 fc0 sc0 ls0 ws0">以采用一种补偿算法<span class="ff4">。</span></div><div class="t m0 x1 h2 ye ff1 fs0 fc0 sc0 ls0 ws0">补偿算法的核心思想是在定点数计算过程中引入额外的操作<span class="ff2">,</span>以保证定点数计算结果和浮点数计算结</div><div class="t m0 x1 h2 yf ff1 fs0 fc0 sc0 ls0 ws0">果的一致性<span class="ff4">。</span>具体而言<span class="ff2">,</span>我们可以通过在滤波器的输入和输出之间引入缩放因子和偏置项<span class="ff2">,</span>来对定点</div><div class="t m0 x1 h2 y10 ff1 fs0 fc0 sc0 ls0 ws0">数进行补偿<span class="ff4">。</span>具体的<span class="_ _0"> </span><span class="ff3">C<span class="_ _1"> </span></span>语言函数如下<span class="ff2">:</span></div><div class="t m0 x1 h3 y11 ff3 fs0 fc0 sc0 ls0 ws0">int LowPassFilter(int x)</div><div class="t m0 x1 h3 y12 ff3 fs0 fc0 sc0 ls0 ws0">{</div><div class="t m0 x2 h3 y13 ff3 fs0 fc0 sc0 ls0 ws0">static int y_prev = 0;</div><div class="t m0 x2 h3 y14 ff3 fs0 fc0 sc0 ls0 ws0">static int scale_factor = 0;</div><div class="t m0 x2 h3 y15 ff3 fs0 fc0 sc0 ls0 ws0">static int y_offset = 0;</div><div class="t m0 x2 h3 y16 ff3 fs0 fc0 sc0 ls0 ws0">int y;</div><div class="t m0 x2 h3 y17 ff3 fs0 fc0 sc0 ls0 ws0">y = (b0 * x + b1 * x_prev - a1 * y_prev) &gt;&gt; scale_factor;</div><div class="t m0 x2 h3 y18 ff3 fs0 fc0 sc0 ls0 ws0">y += y_offset;</div><div class="t m0 x2 h3 y19 ff3 fs0 fc0 sc0 ls0 ws0">x_prev = x;</div><div class="t m0 x2 h3 y1a ff3 fs0 fc0 sc0 ls0 ws0">y_prev = y;</div><div class="t m0 x2 h3 y1b ff3 fs0 fc0 sc0 ls0 ws0">return y;</div><div class="t m0 x1 h3 y1c ff3 fs0 fc0 sc0 ls0 ws0">}</div><div class="t m0 x1 h2 y1d ff1 fs0 fc0 sc0 ls0 ws0">在上述代码中<span class="ff2">,<span class="ff3">x<span class="_ _1"> </span></span></span>表示输入信号<span class="ff2">,<span class="ff3">y<span class="_ _1"> </span></span></span>表示输出信号<span class="ff4">。<span class="ff3">y_prev<span class="_ _1"> </span></span></span>保存了上一时刻的输出信号<span class="ff2">,<span class="ff3">x_prev</span></span></div><div class="t m0 x1 h2 y1e ff1 fs0 fc0 sc0 ls0 ws0">保存了上一时刻的输入信号<span class="ff4">。<span class="ff3">scale_factor<span class="_ _1"> </span></span></span>和<span class="_ _0"> </span><span class="ff3">y_offset<span class="_ _1"> </span></span>是用于补偿定点数的参数<span class="ff2">,</span>可以根据具</div><div class="t m0 x1 h2 y1f ff1 fs0 fc0 sc0 ls0 ws0">体情况进行调整<span class="ff4">。</span></div></div><div class="pi" data-data='{"ctm":[1.568627,0.000000,0.000000,1.568627,0.000000,0.000000]}'></div></div>
100+评论
captcha