自动驾驶不同工况避障模型(perscan、simulink、carsim联仿),能够避开预设的(静态)障碍物

tQhcTpEXJkZIP自动驾驶不同工况避障模型联仿能.zip  701.62KB

资源文件列表:

ZIP 自动驾驶不同工况避障模型联仿能.zip 大约有9个文件
  1. 1.jpg 699.53KB
  2. 标题基于和联合仿真的智能驾驶工况避障模型.doc 1.79KB
  3. 自动驾驶不同工况.html 4.13KB
  4. 自动驾驶不同工况避障模型联仿能够避开预设的静.txt 134B
  5. 自动驾驶技术是近年来飞速发展的热.txt 1.82KB
  6. 自动驾驶技术正日益成为汽车产业的热门话题人们对.txt 1.99KB
  7. 自动驾驶技术深度解析不同工况避.txt 2.49KB
  8. 自动驾驶技术深度解析不同工况避障模.txt 2.48KB
  9. 自动驾驶技术深度解析不同工况避障模型探讨随着科.txt 1.89KB

资源介绍:

自动驾驶不同工况避障模型(perscan、simulink、carsim联仿),能够避开预设的(静态)障碍物

<link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/css/base.min.css" rel="stylesheet"/><link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/css/fancy.min.css" rel="stylesheet"/><link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/89867543/raw.css" rel="stylesheet"/><div id="sidebar" style="display: none"><div id="outline"></div></div><div class="pf w0 h0" data-page-no="1" id="pf1"><div class="pc pc1 w0 h0"><img alt="" class="bi x0 y0 w1 h1" src="/image.php?url=https://csdnimg.cn/release/download_crawler_static/89867543/bg1.jpg"/><div class="t m0 x1 h2 y1 ff1 fs0 fc0 sc0 ls0 ws0">标题<span class="ff2">:</span>基于<span class="_ _0"> </span><span class="ff3">Perscan<span class="ff4">、</span>Simulink<span class="_ _1"> </span></span>和<span class="_ _0"> </span><span class="ff3">Carsim<span class="_ _1"> </span></span>联合仿真的智能驾驶工况避障模型研究</div><div class="t m0 x1 h2 y2 ff1 fs0 fc0 sc0 ls0 ws0">摘要<span class="ff2">:</span>本文通过结合<span class="_ _0"> </span><span class="ff3">Perscan<span class="ff4">、</span>Simulink<span class="_ _1"> </span></span>和<span class="_ _0"> </span><span class="ff3">Carsim<span class="_ _1"> </span></span>等仿真工具<span class="ff2">,</span>研究了一种自动驾驶系统在不</div><div class="t m0 x1 h2 y3 ff1 fs0 fc0 sc0 ls0 ws0">同工况下对障碍物进行避让的模型<span class="ff4">。</span>该模型能够精确地避开预设的静态障碍物<span class="ff2">,</span>并且能够通过后期优</div><div class="t m0 x1 h2 y4 ff1 fs0 fc0 sc0 ls0 ws0">化进一步提升性能<span class="ff4">。</span>本研究将重点探讨系统的建模过程<span class="ff4">、</span>算法设计及仿真结果<span class="ff2">,</span>并通过实验证明该模</div><div class="t m0 x1 h2 y5 ff1 fs0 fc0 sc0 ls0 ws0">型的可行性和有效性<span class="ff4">。</span></div><div class="t m0 x1 h2 y6 ff3 fs0 fc0 sc0 ls0 ws0">1.<span class="_ _2"> </span><span class="ff1">引言</span></div><div class="t m0 x1 h2 y7 ff1 fs0 fc0 sc0 ls0 ws0">随着智能驾驶技术的快速发展<span class="ff2">,</span>自动驾驶系统的安全性和可靠性成为了研究的焦点之一<span class="ff4">。</span>针对不同工</div><div class="t m0 x1 h2 y8 ff1 fs0 fc0 sc0 ls0 ws0">况下的避障问题<span class="ff2">,</span>本文提出了一种基于<span class="_ _0"> </span><span class="ff3">Perscan<span class="ff4">、</span>Simulink<span class="_ _1"> </span></span>和<span class="_ _0"> </span><span class="ff3">Carsim<span class="_ _1"> </span></span>联合仿真的智能驾驶工况</div><div class="t m0 x1 h2 y9 ff1 fs0 fc0 sc0 ls0 ws0">避障模型<span class="ff4">。</span></div><div class="t m0 x1 h2 ya ff3 fs0 fc0 sc0 ls0 ws0">2.<span class="_ _2"> </span><span class="ff1">模型建立及算法设计</span></div><div class="t m0 x1 h2 yb ff3 fs0 fc0 sc0 ls0 ws0">2.1.<span class="_"> </span>Perscan<span class="_ _1"> </span><span class="ff1">仿真工具介绍</span></div><div class="t m0 x1 h2 yc ff3 fs0 fc0 sc0 ls0 ws0">Perscan<span class="_ _1"> </span><span class="ff1">是一款用于模拟障碍物感知的仿真工具<span class="ff2">,</span>它能够生成传感器的感知数据<span class="ff2">,</span>为自动驾驶系统提</span></div><div class="t m0 x1 h2 yd ff1 fs0 fc0 sc0 ls0 ws0">供输入<span class="ff4">。</span></div><div class="t m0 x1 h2 ye ff3 fs0 fc0 sc0 ls0 ws0">2.2.<span class="_"> </span>Simulink<span class="_ _1"> </span><span class="ff1">仿真工具介绍</span></div><div class="t m0 x1 h2 yf ff3 fs0 fc0 sc0 ls0 ws0">Simulink<span class="_ _1"> </span><span class="ff1">是一款广泛应用于系统级仿真的工具<span class="ff2">,</span>它可以快速搭建系统模型<span class="ff2">,</span>并进行仿真和分析<span class="ff4">。</span></span></div><div class="t m0 x1 h2 y10 ff3 fs0 fc0 sc0 ls0 ws0">2.3.<span class="_"> </span>Carsim<span class="_ _1"> </span><span class="ff1">仿真工具介绍</span></div><div class="t m0 x1 h2 y11 ff3 fs0 fc0 sc0 ls0 ws0">Carsim<span class="_ _1"> </span><span class="ff1">是一款用于车辆动力学仿真的工具<span class="ff2">,</span>它能够模拟车辆在不同路况下的运动行为<span class="ff4">。</span></span></div><div class="t m0 x1 h2 y12 ff3 fs0 fc0 sc0 ls0 ws0">2.4.<span class="_"> </span><span class="ff1">智能驾驶工况避障模型设计</span></div><div class="t m0 x1 h2 y13 ff1 fs0 fc0 sc0 ls0 ws0">基于<span class="_ _0"> </span><span class="ff3">Perscan<span class="ff4">、</span>Simulink<span class="_ _1"> </span></span>和<span class="_ _0"> </span><span class="ff3">Carsim<span class="_ _1"> </span></span>联合仿真<span class="ff2">,</span>本文提出了一种智能驾驶工况避障模型<span class="ff4">。</span>该模型</div><div class="t m0 x1 h2 y14 ff1 fs0 fc0 sc0 ls0 ws0">首先利用<span class="_ _0"> </span><span class="ff3">Perscan<span class="_ _1"> </span></span>生成的传感器数据进行障碍物感知<span class="ff2">,</span>然后通过<span class="_ _0"> </span><span class="ff3">Simulink<span class="_ _1"> </span></span>将感知数据输入到模型</div><div class="t m0 x1 h2 y15 ff1 fs0 fc0 sc0 ls0 ws0">中进行处理<span class="ff2">,</span>并最终采用<span class="_ _0"> </span><span class="ff3">Carsim<span class="_ _1"> </span></span>模拟车辆的运动行为<span class="ff4">。</span></div><div class="t m0 x1 h2 y16 ff3 fs0 fc0 sc0 ls0 ws0">3.<span class="_ _2"> </span><span class="ff1">仿真实验及结果分析</span></div><div class="t m0 x1 h2 y17 ff1 fs0 fc0 sc0 ls0 ws0">为了验证所提出的工况避障模型的性能<span class="ff2">,</span>本文进行了大量的仿真实验<span class="ff4">。</span>通过改变工况参数和障碍物位</div><div class="t m0 x1 h2 y18 ff1 fs0 fc0 sc0 ls0 ws0">置等因素<span class="ff2">,</span>分析模型在不同场景下的避障效果<span class="ff4">。</span></div><div class="t m0 x1 h2 y19 ff3 fs0 fc0 sc0 ls0 ws0">4.<span class="_ _2"> </span><span class="ff1">后期优化与模型改进</span></div><div class="t m0 x1 h2 y1a ff1 fs0 fc0 sc0 ls0 ws0">基于仿真实验结果<span class="ff2">,</span>可以发现当前模型在避障时还存在一定的局限性<span class="ff4">。</span>因此<span class="ff2">,</span>本文提出了一种后期优</div><div class="t m0 x1 h2 y1b ff1 fs0 fc0 sc0 ls0 ws0">化方法<span class="ff2">,</span>通过进一步改进模型的算法和参数配置<span class="ff2">,</span>提升模型的避障性能<span class="ff4">。</span></div><div class="t m0 x1 h2 y1c ff3 fs0 fc0 sc0 ls0 ws0">5.<span class="_ _2"> </span><span class="ff1">结论</span></div></div><div class="pi" data-data='{"ctm":[1.568627,0.000000,0.000000,1.568627,0.000000,0.000000]}'></div></div>
100+评论
captcha