基于粒子群(pso)优化的bp神经网络PID控制…

MgDDbFYOEtZIP基于粒子群优化的神经网络控制.zip  90.15KB

资源文件列表:

ZIP 基于粒子群优化的神经网络控制.zip 大约有12个文件
  1. 1.jpg 28.77KB
  2. 2.jpg 20.7KB
  3. 3.jpg 19.49KB
  4. 4.jpg 33.2KB
  5. 基于粒子群优化的神经.html 4.44KB
  6. 基于粒子群优化的神经网络.txt 87B
  7. 基于粒子群优化的神经网络控制一引言在.doc 2.25KB
  8. 基于粒子群优化的神经网络控制技.txt 1.94KB
  9. 基于粒子群优化的神经网络控制技术详.txt 1.97KB
  10. 基于粒子群优化神经网络控制的深.txt 2.14KB
  11. 基于粒子群优化神经网络控制的深入分析一引言随.txt 1.95KB
  12. 基于粒子群优化神经网络控制的深度技术研究一引.txt 2.25KB

资源介绍:

基于粒子群(pso)优化的bp神经网络PID控制…

<link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/css/base.min.css" rel="stylesheet"/><link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/css/fancy.min.css" rel="stylesheet"/><link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/89867215/raw.css" rel="stylesheet"/><div id="sidebar" style="display: none"><div id="outline"></div></div><div class="pf w0 h0" data-page-no="1" id="pf1"><div class="pc pc1 w0 h0"><img alt="" class="bi x0 y0 w1 h1" src="/image.php?url=https://csdnimg.cn/release/download_crawler_static/89867215/bg1.jpg"/><div class="t m0 x1 h2 y1 ff1 fs0 fc0 sc0 ls0 ws0">基于粒子群<span class="ff2">(<span class="ff3">PSO</span>)</span>优化的<span class="_ _0"> </span><span class="ff3">BP<span class="_ _1"> </span></span>神经网络<span class="_ _0"> </span><span class="ff3">PID<span class="_ _1"> </span></span>控制</div><div class="t m0 x1 h2 y2 ff1 fs0 fc0 sc0 ls0 ws0">一<span class="ff4">、</span>引言</div><div class="t m0 x1 h2 y3 ff1 fs0 fc0 sc0 ls0 ws0">在现代控制系统中<span class="ff2">,<span class="ff3">PID</span>(</span>比例<span class="ff3">-</span>积分<span class="ff3">-</span>微分<span class="ff2">)</span>控制算法是最常用的一种控制策略<span class="ff4">。</span>然而<span class="ff2">,</span>传统的<span class="_ _0"> </span><span class="ff3">PID</span></div><div class="t m0 x1 h2 y4 ff1 fs0 fc0 sc0 ls0 ws0">控制算法在某些复杂系统中可能无法达到理想的控制效果<span class="ff4">。</span>为了解决这一问题<span class="ff2">,</span>我们提出了一种基于</div><div class="t m0 x1 h2 y5 ff1 fs0 fc0 sc0 ls0 ws0">粒子群<span class="ff2">(<span class="ff3">PSO</span>)</span>优化的<span class="_ _0"> </span><span class="ff3">BP<span class="_ _1"> </span></span>神经网络<span class="_ _0"> </span><span class="ff3">PID<span class="_ _1"> </span></span>控制策略<span class="ff4">。</span>这种策略能够有效地改善控制系统的性能<span class="ff2">,</span>特别</div><div class="t m0 x1 h2 y6 ff1 fs0 fc0 sc0 ls0 ws0">是在面对复杂非线性系统和动态变化的环境时<span class="ff4">。</span></div><div class="t m0 x1 h2 y7 ff1 fs0 fc0 sc0 ls0 ws0">二<span class="ff4">、</span>粒子群优化算法<span class="ff2">(<span class="ff3">PSO</span>)</span>简介</div><div class="t m0 x1 h2 y8 ff1 fs0 fc0 sc0 ls0 ws0">粒子群优化算法<span class="ff2">(<span class="ff3">PSO</span>)</span>是一种基于群体智能的优化算法<span class="ff2">,</span>它通过模拟鸟群<span class="ff4">、</span>鱼群等生物群体的行为</div><div class="t m0 x1 h2 y9 ff1 fs0 fc0 sc0 ls0 ws0">规律来进行寻优<span class="ff4">。</span>在<span class="_ _0"> </span><span class="ff3">PSO<span class="_ _1"> </span></span>算法中<span class="ff2">,</span>每个粒子代表问题的一个解<span class="ff2">,</span>粒子通过自身的速度和位置来更新自</div><div class="t m0 x1 h2 ya ff1 fs0 fc0 sc0 ls0 ws0">身状态<span class="ff2">,</span>同时与群体中的其他粒子进行信息交流和协作<span class="ff2">,</span>最终找到问题的最优解<span class="ff4">。</span></div><div class="t m0 x1 h2 yb ff1 fs0 fc0 sc0 ls0 ws0">三<span class="ff4">、<span class="ff3">BP<span class="_ _1"> </span></span></span>神经网络简介</div><div class="t m0 x1 h2 yc ff3 fs0 fc0 sc0 ls0 ws0">BP<span class="_ _1"> </span><span class="ff1">神经网络是一种基于神经元之间连接关系进行学习的网络模型<span class="ff4">。</span>通过训练数据对网络进行学习<span class="ff2">,</span></span></div><div class="t m0 x1 h2 yd ff3 fs0 fc0 sc0 ls0 ws0">BP<span class="_ _1"> </span><span class="ff1">神经网络可以学习到数据之间的复杂关系<span class="ff2">,</span>并将其应用于各种模式识别和预测任务中<span class="ff4">。</span>然而<span class="ff2">,</span>传统</span></div><div class="t m0 x1 h2 ye ff1 fs0 fc0 sc0 ls0 ws0">的<span class="_ _0"> </span><span class="ff3">BP<span class="_ _1"> </span></span>神经网络在处理控制问题时<span class="ff2">,</span>往往存在收敛速度慢<span class="ff4">、</span>易陷入局部最小值等问题<span class="ff4">。</span></div><div class="t m0 x1 h2 yf ff1 fs0 fc0 sc0 ls0 ws0">四<span class="ff4">、</span>基于<span class="_ _0"> </span><span class="ff3">PSO<span class="_ _1"> </span></span>优化的<span class="_ _0"> </span><span class="ff3">BP<span class="_ _1"> </span></span>神经网络<span class="_ _0"> </span><span class="ff3">PID<span class="_ _1"> </span></span>控制策略</div><div class="t m0 x1 h2 y10 ff1 fs0 fc0 sc0 ls0 ws0">为了解决<span class="_ _0"> </span><span class="ff3">BP<span class="_ _1"> </span></span>神经网络在控制问题中的不足<span class="ff2">,</span>我们提出了一种基于<span class="_ _0"> </span><span class="ff3">PSO<span class="_ _1"> </span></span>优化的<span class="_ _0"> </span><span class="ff3">BP<span class="_ _1"> </span></span>神经网络<span class="_ _0"> </span><span class="ff3">PID<span class="_ _1"> </span></span>控制</div><div class="t m0 x1 h2 y11 ff1 fs0 fc0 sc0 ls0 ws0">策略<span class="ff4">。</span>该策略将<span class="_ _0"> </span><span class="ff3">PSO<span class="_ _1"> </span></span>算法与<span class="_ _0"> </span><span class="ff3">BP<span class="_ _1"> </span></span>神经网络相结合<span class="ff2">,</span>利用<span class="_ _0"> </span><span class="ff3">PSO<span class="_ _1"> </span></span>算法对<span class="_ _0"> </span><span class="ff3">BP<span class="_ _1"> </span></span>神经网络的权值进行优化<span class="ff4">。</span>具</div><div class="t m0 x1 h2 y12 ff1 fs0 fc0 sc0 ls0 ws0">体而言<span class="ff2">,</span>我们首先使用<span class="_ _0"> </span><span class="ff3">PSO<span class="_ _1"> </span></span>算法在权值空间中搜索最优的权值组合<span class="ff2">,</span>然后将这些权值作为<span class="_ _0"> </span><span class="ff3">BP<span class="_ _1"> </span></span>神经网</div><div class="t m0 x1 h2 y13 ff1 fs0 fc0 sc0 ls0 ws0">络的初始权值进行训练<span class="ff4">。</span>通过这种方式<span class="ff2">,</span>我们可以有效地提高<span class="_ _0"> </span><span class="ff3">BP<span class="_ _1"> </span></span>神经网络的收敛速度和避免陷入局</div><div class="t m0 x1 h2 y14 ff1 fs0 fc0 sc0 ls0 ws0">部最小值的问题<span class="ff4">。</span></div><div class="t m0 x1 h2 y15 ff1 fs0 fc0 sc0 ls0 ws0">五<span class="ff4">、<span class="ff3">PID<span class="_ _1"> </span></span></span>控制策略的改进</div><div class="t m0 x1 h2 y16 ff1 fs0 fc0 sc0 ls0 ws0">在传统的<span class="_ _0"> </span><span class="ff3">PID<span class="_ _1"> </span></span>控制策略中<span class="ff2">,</span>比例<span class="ff4">、</span>积分和微分三个部分的参数通常是固定的<span class="ff4">。</span>然而<span class="ff2">,</span>在实际应用中<span class="ff2">,</span></div><div class="t m0 x1 h2 y17 ff1 fs0 fc0 sc0 ls0 ws0">系统的动态特性可能会随着时间发生变化<span class="ff4">。</span>为了解决这一问题<span class="ff2">,</span>我们利用优化后的<span class="_ _0"> </span><span class="ff3">BP<span class="_ _1"> </span></span>神经网络来动</div><div class="t m0 x1 h2 y18 ff1 fs0 fc0 sc0 ls0 ws0">态调整<span class="_ _0"> </span><span class="ff3">PID<span class="_ _1"> </span></span>控制器的参数<span class="ff4">。</span>具体而言<span class="ff2">,</span>我们使用<span class="_ _0"> </span><span class="ff3">BP<span class="_ _1"> </span></span>神经网络对系统的实时状态进行学习和预测<span class="ff2">,</span>然</div><div class="t m0 x1 h2 y19 ff1 fs0 fc0 sc0 ls0 ws0">后根据预测结果调整<span class="_ _0"> </span><span class="ff3">PID<span class="_ _1"> </span></span>控制器的参数<span class="ff2">,</span>以达到更好的控制效果<span class="ff4">。</span></div><div class="t m0 x1 h2 y1a ff1 fs0 fc0 sc0 ls0 ws0">六<span class="ff4">、</span>实验与分析</div></div><div class="pi" data-data='{"ctm":[1.568627,0.000000,0.000000,1.568627,0.000000,0.000000]}'></div></div>
100+评论
captcha