基于扩展卡尔曼观测器的无模型预测电流控制仿真中包含普基于ESO,与EKF两个观测器,可自行切对比

IjNBDlLJgmaeZIP基于扩展卡尔曼观测器的无模型预测电流.zip  176.29KB

资源文件列表:

ZIP 基于扩展卡尔曼观测器的无模型预测电流.zip 大约有9个文件
  1. 1.jpg 166.83KB
  2. 基于扩展卡尔曼观测器的无模型预.txt 141B
  3. 基于扩展卡尔曼观测器的无模型预测电流.txt 2.14KB
  4. 基于扩展卡尔曼观测器的无模型预测电流控制.txt 2.35KB
  5. 基于扩展卡尔曼观测器的无模型预测电流控制仿.doc 2.26KB
  6. 基于扩展卡尔曼观测器的无模型预测电流控制仿真中包.html 4.2KB
  7. 基于扩展卡尔曼观测器的无模型预测电流控制技.txt 2.34KB
  8. 基于扩展卡尔曼观测器的无模型预测电流控制深.txt 2.05KB
  9. 标题深度探讨基于扩展卡尔曼观测器的无模型预测.txt 2.37KB

资源介绍:

基于扩展卡尔曼观测器的无模型预测电流控制 仿真中包含普基于ESO,与EKF两个观测器,可自行切对比

<link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/css/base.min.css" rel="stylesheet"/><link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/css/fancy.min.css" rel="stylesheet"/><link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/90213822/2/raw.css" rel="stylesheet"/><div id="sidebar" style="display: none"><div id="outline"></div></div><div class="pf w0 h0" data-page-no="1" id="pf1"><div class="pc pc1 w0 h0"><img alt="" class="bi x0 y0 w1 h1" src="/image.php?url=https://csdnimg.cn/release/download_crawler_static/90213822/bg1.jpg"/><div class="t m0 x1 h2 y1 ff1 fs0 fc0 sc0 ls0 ws0">基于扩展卡尔曼观测器的无模型预测电流控制<span class="ff2">:</span>仿真中的两种观测器比较与应用</div><div class="t m0 x1 h2 y2 ff1 fs0 fc0 sc0 ls0 ws0">引言<span class="ff2">:</span></div><div class="t m0 x1 h2 y3 ff1 fs0 fc0 sc0 ls0 ws0">随着现代电力电子技术的飞速发展<span class="ff2">,</span>电流控制成为了电力系统中至关重要的环节<span class="ff3">。</span>为了提高电流控制</div><div class="t m0 x1 h2 y4 ff1 fs0 fc0 sc0 ls0 ws0">的性能<span class="ff2">,</span>研究者们不断探索新的控制策略<span class="ff3">。</span>本文重点探讨基于扩展卡尔曼观测器的无模型预测电流控</div><div class="t m0 x1 h2 y5 ff1 fs0 fc0 sc0 ls0 ws0">制<span class="ff2">,</span>特别涉及仿真环境中使用的两种观测器<span class="ff2">:</span>扩展卡尔曼滤波器<span class="ff2">(<span class="ff4">EKF</span>)</span>和扩展卡尔曼观测器<span class="ff2">(<span class="ff4">ESO</span></span></div><div class="t m0 x1 h2 y6 ff2 fs0 fc0 sc0 ls0 ws0">)<span class="ff3">。<span class="ff1">本文将介绍这两种观测器的原理</span>、<span class="ff1">特点</span></span>,<span class="ff1">并通过仿真实验进行性能对比<span class="ff3">。</span></span></div><div class="t m0 x1 h2 y7 ff1 fs0 fc0 sc0 ls0 ws0">一<span class="ff3">、</span>扩展卡尔曼观测器<span class="ff2">(<span class="ff4">ESO</span>)</span>原理及其在无模型预测电流控制中的应用</div><div class="t m0 x1 h2 y8 ff1 fs0 fc0 sc0 ls0 ws0">扩展卡尔曼观测器<span class="ff2">(<span class="ff4">ESO</span>)</span>是一种强大的非线性系统状态估计工具<span class="ff3">。</span>在电力系统中<span class="ff2">,<span class="ff4">ESO<span class="_ _0"> </span></span></span>可以用来估</div><div class="t m0 x1 h2 y9 ff1 fs0 fc0 sc0 ls0 ws0">计电池的荷电状态<span class="ff3">、</span>系统状态以及输出误差等<span class="ff3">。</span>在无模型预测电流控制中<span class="ff2">,<span class="ff4">ESO<span class="_ _0"> </span></span></span>通过对系统状态的估</div><div class="t m0 x1 h2 ya ff1 fs0 fc0 sc0 ls0 ws0">计<span class="ff2">,</span>实现对电流的准确控制<span class="ff3">。</span>具体而言<span class="ff2">,<span class="ff4">ESO<span class="_ _0"> </span></span></span>通过对系统状态的观测和预测<span class="ff2">,</span>为电流控制器提供实时</div><div class="t m0 x1 h2 yb ff1 fs0 fc0 sc0 ls0 ws0">的状态信息<span class="ff2">,</span>从而实现电流的精确调节<span class="ff3">。</span>此外<span class="ff2">,</span>由于<span class="_ _1"> </span><span class="ff4">ESO<span class="_ _0"> </span></span>具有在线自适应能力<span class="ff2">,</span>能够在系统参数变化</div><div class="t m0 x1 h2 yc ff1 fs0 fc0 sc0 ls0 ws0">时自动调整观测器参数<span class="ff2">,</span>因此具有良好的鲁棒性<span class="ff3">。</span></div><div class="t m0 x1 h2 yd ff1 fs0 fc0 sc0 ls0 ws0">二<span class="ff3">、</span>扩展卡尔曼滤波器<span class="ff2">(<span class="ff4">EKF</span>)</span>原理及其在电流控制中的应用</div><div class="t m0 x1 h2 ye ff1 fs0 fc0 sc0 ls0 ws0">扩展卡尔曼滤波器<span class="ff2">(<span class="ff4">EKF</span>)</span>是一种常用的非线性滤波算法<span class="ff3">。</span>与<span class="_ _1"> </span><span class="ff4">ESO<span class="_ _0"> </span></span>类似<span class="ff2">,<span class="ff4">EKF<span class="_ _0"> </span></span></span>也可以用于估计系统的</div><div class="t m0 x1 h2 yf ff1 fs0 fc0 sc0 ls0 ws0">状态<span class="ff3">。</span>在电流控制中<span class="ff2">,<span class="ff4">EKF<span class="_ _0"> </span></span></span>通过对系统状态的估计<span class="ff2">,</span>为控制器提供准确的参考信息<span class="ff3">。</span>然而<span class="ff2">,</span>由于<span class="_ _1"> </span><span class="ff4">EKF</span></div><div class="t m0 x1 h2 y10 ff1 fs0 fc0 sc0 ls0 ws0">在非线性系统中的性能受到线性化误差的影响<span class="ff2">,</span>因此在某些情况下<span class="ff2">,</span>其性能可能不如<span class="_ _1"> </span><span class="ff4">ESO<span class="ff3">。</span></span>此外<span class="ff2">,</span></div><div class="t m0 x1 h2 y11 ff4 fs0 fc0 sc0 ls0 ws0">EKF<span class="_ _0"> </span><span class="ff1">的运算复杂度相对较高<span class="ff2">,</span>这在一些实时性要求较高的场合可能带来一定的挑战<span class="ff3">。</span></span></div><div class="t m0 x1 h2 y12 ff1 fs0 fc0 sc0 ls0 ws0">三<span class="ff3">、</span>仿真实验及性能对比</div><div class="t m0 x1 h2 y13 ff1 fs0 fc0 sc0 ls0 ws0">为了对比<span class="_ _1"> </span><span class="ff4">ESO<span class="_ _0"> </span></span>和<span class="_ _1"> </span><span class="ff4">EKF<span class="_ _0"> </span></span>在基于无模型预测电流控制中的性能差异<span class="ff2">,</span>我们在仿真环境中进行了大量实验</div><div class="t m0 x1 h2 y14 ff3 fs0 fc0 sc0 ls0 ws0">。<span class="ff1">实验结果表明<span class="ff2">,</span>在大多数情况下<span class="ff2">,<span class="ff4">ESO<span class="_ _0"> </span></span></span>的估计精度和鲁棒性均优于<span class="_ _1"> </span><span class="ff4">EKF</span></span>。<span class="ff1">特别是在系统参数变化较</span></div><div class="t m0 x1 h2 y15 ff1 fs0 fc0 sc0 ls0 ws0">大的情况下<span class="ff2">,<span class="ff4">ESO<span class="_ _0"> </span></span></span>能够迅速适应系统变化<span class="ff2">,</span>保持较高的估计精度<span class="ff2">;</span>而<span class="_ _1"> </span><span class="ff4">EKF<span class="_ _0"> </span></span>的线性化误差可能导致其性</div><div class="t m0 x1 h2 y16 ff1 fs0 fc0 sc0 ls0 ws0">能下降<span class="ff3">。</span>此外<span class="ff2">,</span>在运算复杂度方面<span class="ff2">,<span class="ff4">ESO<span class="_ _0"> </span></span></span>相比<span class="_ _1"> </span><span class="ff4">EKF<span class="_ _0"> </span></span>具有优势<span class="ff2">,</span>更适用于实时性要求较高的场合<span class="ff3">。</span></div><div class="t m0 x1 h2 y17 ff1 fs0 fc0 sc0 ls0 ws0">四<span class="ff3">、</span>两种观测器的切换对比</div><div class="t m0 x1 h2 y18 ff1 fs0 fc0 sc0 ls0 ws0">在实际应用中<span class="ff2">,</span>我们可以根据系统需求和实际情况在<span class="_ _1"> </span><span class="ff4">ESO<span class="_ _0"> </span></span>和<span class="_ _1"> </span><span class="ff4">EKF<span class="_ _0"> </span></span>之间进行切换<span class="ff3">。</span>在某些场景下<span class="ff2">,<span class="ff4">ESO</span></span></div><div class="t m0 x1 h2 y19 ff1 fs0 fc0 sc0 ls0 ws0">可能更适合<span class="ff2">;</span>而在其他场景下<span class="ff2">,<span class="ff4">EKF<span class="_ _0"> </span></span></span>可能更具优势<span class="ff3">。</span>这种切换机制可以根据系统的实时性能<span class="ff3">、</span>估计精</div><div class="t m0 x1 h2 y1a ff1 fs0 fc0 sc0 ls0 ws0">度<span class="ff3">、</span>运算资源等因素进行动态调整<span class="ff3">。</span>通过仿真实验对比<span class="ff2">,</span>我们发现这种切换机制可以有效地提高系统</div><div class="t m0 x1 h2 y1b ff1 fs0 fc0 sc0 ls0 ws0">的整体性能<span class="ff3">。</span></div><div class="t m0 x1 h2 y1c ff1 fs0 fc0 sc0 ls0 ws0">五<span class="ff3">、</span>结论</div></div><div class="pi" data-data='{"ctm":[1.568627,0.000000,0.000000,1.568627,0.000000,0.000000]}'></div></div>
100+评论
captcha