遗传算法 无功优化matlab利用遗传算法和改进遗传算法对标准节点系统(14 33节点)进行无功优化,以网损+电压偏差罚函数+无功偏差罚函数作为目标函数,利用发电机端电压 变压器变比 电容器容量作为
资源内容介绍
遗传算法 无功优化matlab利用遗传算法和改进遗传算法对标准节点系统(14 33节点)进行无功优化,以网损+电压偏差罚函数+无功偏差罚函数作为目标函数,利用发电机端电压 变压器变比 电容器容量作为优化变量,实现很好的优化效果 <link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/css/base.min.css" rel="stylesheet"/><link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/css/fancy.min.css" rel="stylesheet"/><link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/90274068/2/raw.css" rel="stylesheet"/><div id="sidebar" style="display: none"><div id="outline"></div></div><div class="pf w0 h0" data-page-no="1" id="pf1"><div class="pc pc1 w0 h0"><img alt="" class="bi x0 y0 w1 h1" src="/image.php?url=https://csdnimg.cn/release/download_crawler_static/90274068/bg1.jpg"/><div class="t m0 x1 h2 y1 ff1 fs0 fc0 sc0 ls0 ws0">遗传算法在无功优化中的应用</div><div class="t m0 x1 h2 y2 ff1 fs0 fc0 sc0 ls0 ws0">摘要<span class="ff2">:</span>随着电力系统的快速发展和智能化水平的提高<span class="ff2">,</span>电力系统的无功优化成为了一个重要的问题<span class="ff3">。</span></div><div class="t m0 x1 h2 y3 ff1 fs0 fc0 sc0 ls0 ws0">本文基于遗传算法和改进遗传算法<span class="ff2">,</span>对标准节点系统进行了无功优化<span class="ff3">。</span>以网损<span class="ff4">+</span>电压偏差罚函数<span class="ff4">+</span>无功</div><div class="t m0 x1 h2 y4 ff1 fs0 fc0 sc0 ls0 ws0">偏差罚函数作为目标函数<span class="ff2">,</span>考虑发电机端电压<span class="ff3">、</span>变压器变比和电容器容量作为优化变量<span class="ff3">。</span>通过实证分</div><div class="t m0 x1 h2 y5 ff1 fs0 fc0 sc0 ls0 ws0">析表明<span class="ff2">,</span>该方法能够有效地提高电力系统的无功优化效果<span class="ff3">。</span></div><div class="t m0 x1 h2 y6 ff4 fs0 fc0 sc0 ls0 ws0">1.<span class="_ _0"> </span><span class="ff1">引言</span></div><div class="t m0 x1 h2 y7 ff1 fs0 fc0 sc0 ls0 ws0">电力系统是一个复杂的<span class="ff3">、</span>非线性的动态系统<span class="ff2">,</span>其中无功功率的调节对于电力系统的稳定运行至关重要</div><div class="t m0 x1 h2 y8 ff3 fs0 fc0 sc0 ls0 ws0">。<span class="ff1">无功优化的目标是通过调整系统中各个元件的参数<span class="ff2">,</span>使得系统的功率因数尽可能接近<span class="_ _1"> </span><span class="ff4">1<span class="ff2">,</span></span>从而减少</span></div><div class="t m0 x1 h2 y9 ff1 fs0 fc0 sc0 ls0 ws0">无功功率的损失<span class="ff3">。</span>在传统的优化方法中<span class="ff2">,</span>经常采用试错法或者经验公式进行参数调整<span class="ff2">,</span>但这种方法具</div><div class="t m0 x1 h2 ya ff1 fs0 fc0 sc0 ls0 ws0">有局限性和低效性<span class="ff3">。</span>随着计算机技术的发展<span class="ff2">,</span>遗传算法成为了一种有效的无功优化方法<span class="ff3">。</span></div><div class="t m0 x1 h2 yb ff4 fs0 fc0 sc0 ls0 ws0">2.<span class="_ _0"> </span><span class="ff1">遗传算法简介</span></div><div class="t m0 x1 h2 yc ff1 fs0 fc0 sc0 ls0 ws0">遗传算法是一种基于生物进化过程的优化算法<span class="ff3">。</span>它通过模拟进化过程中的选择<span class="ff3">、</span>交叉和变异等自然现</div><div class="t m0 x1 h2 yd ff1 fs0 fc0 sc0 ls0 ws0">象<span class="ff2">,</span>来寻找最优解<span class="ff3">。</span>遗传算法具有较强的鲁棒性和全局搜索能力<span class="ff2">,</span>因此在无功优化中得到了广泛的应</div><div class="t m0 x1 h2 ye ff1 fs0 fc0 sc0 ls0 ws0">用<span class="ff3">。</span>遗传算法的基本流程包括初始化种群<span class="ff3">、</span>选择操作<span class="ff3">、</span>交叉操作<span class="ff3">、</span>变异操作和适应度评价等<span class="ff3">。</span></div><div class="t m0 x1 h2 yf ff4 fs0 fc0 sc0 ls0 ws0">3.<span class="_ _0"> </span><span class="ff1">无功优化模型</span></div><div class="t m0 x1 h2 y10 ff1 fs0 fc0 sc0 ls0 ws0">本文基于标准节点系统<span class="ff2">(<span class="ff4">14 33<span class="_ _2"> </span></span></span>节点<span class="ff2">),</span>建立了无功优化模型<span class="ff3">。</span>以网损<span class="ff4">+</span>电压偏差罚函数<span class="ff4">+</span>无功偏差罚</div><div class="t m0 x1 h2 y11 ff1 fs0 fc0 sc0 ls0 ws0">函数作为目标函数<span class="ff2">,</span>该目标函数综合考虑了系统的网损情况<span class="ff3">、</span>电压偏差和无功偏差<span class="ff3">。</span>电力系统的发电</div><div class="t m0 x1 h2 y12 ff1 fs0 fc0 sc0 ls0 ws0">机端电压<span class="ff3">、</span>变压器变比和电容器容量被选为优化变量<span class="ff3">。</span>通过遗传算法对这些变量进行调整<span class="ff2">,</span>找到最优</div><div class="t m0 x1 h2 y13 ff1 fs0 fc0 sc0 ls0 ws0">解<span class="ff2">,</span>从而实现无功优化<span class="ff3">。</span></div><div class="t m0 x1 h2 y14 ff4 fs0 fc0 sc0 ls0 ws0">4.<span class="_ _0"> </span><span class="ff1">遗传算法的改进</span></div><div class="t m0 x1 h2 y15 ff1 fs0 fc0 sc0 ls0 ws0">为了提高遗传算法的求解效率和优化结果<span class="ff2">,</span>本文对传统遗传算法进行了改进<span class="ff3">。</span>具体改进包括<span class="ff2">:</span>选择操</div><div class="t m0 x1 h2 y16 ff1 fs0 fc0 sc0 ls0 ws0">作时采用轮盘赌选择法<span class="ff2">,</span>交叉操作时采用随机单点交叉法<span class="ff2">,</span>变异操作时采用随机均匀变异法<span class="ff3">。</span>通过改</div><div class="t m0 x1 h2 y17 ff1 fs0 fc0 sc0 ls0 ws0">进遗传算法的操作方法<span class="ff2">,</span>提高了优化算法的全局搜索能力<span class="ff2">,</span>使得优化结果更加准确和稳定<span class="ff3">。</span></div><div class="t m0 x1 h2 y18 ff4 fs0 fc0 sc0 ls0 ws0">5.<span class="_ _0"> </span><span class="ff1">实证结果与分析</span></div><div class="t m0 x1 h2 y19 ff1 fs0 fc0 sc0 ls0 ws0">本文选取了标准节点系统进行了实证分析<span class="ff3">。</span>通过对发电机端电压<span class="ff3">、</span>变压器变比和电容器容量等优化变</div><div class="t m0 x1 h2 y1a ff1 fs0 fc0 sc0 ls0 ws0">量的调整<span class="ff2">,</span>得到了一组优化结果<span class="ff3">。</span>与传统方法相比<span class="ff2">,</span>通过遗传算法和改进遗传算法进行的无功优化<span class="ff2">,</span></div><div class="t m0 x1 h2 y1b ff1 fs0 fc0 sc0 ls0 ws0">能够显著减少系统的无功功率损失<span class="ff2">,</span>并提高系统的功率因数<span class="ff3">。</span>实证结果表明了遗传算法在无功优化中</div><div class="t m0 x1 h2 y1c ff1 fs0 fc0 sc0 ls0 ws0">的有效性和优越性<span class="ff3">。</span></div><div class="t m0 x1 h2 y1d ff4 fs0 fc0 sc0 ls0 ws0">6.<span class="_ _0"> </span><span class="ff1">结论</span></div><div class="t m0 x1 h2 y1e ff1 fs0 fc0 sc0 ls0 ws0">本文基于遗传算法和改进遗传算法<span class="ff2">,</span>对标准节点系统进行了无功优化<span class="ff3">。</span>通过以网损<span class="ff4">+</span>电压偏差罚函数<span class="ff4">+</span></div><div class="t m0 x1 h2 y1f ff1 fs0 fc0 sc0 ls0 ws0">无功偏差罚函数作为目标函数<span class="ff2">,</span>考虑发电机端电压<span class="ff3">、</span>变压器变比和电容器容量作为优化变量<span class="ff2">,</span>实现了</div></div><div class="pi" data-data='{"ctm":[1.568627,0.000000,0.000000,1.568627,0.000000,0.000000]}'></div></div>