"Matlab实现LMS与NLMS算法:降噪、隔振算法及频谱分析,可替换为Excel数据处理与ppt公式详细推导",Matlab代码LMS NLMS算法降噪 隔振算法,外加原信号以及误差信号的频谱分析

bGzHFdsxAxiZIP代码算法降噪隔振算法外加原信号以.zip  296.16KB

资源文件列表:

ZIP 代码算法降噪隔振算法外加原信号以.zip 大约有10个文件
  1. 1.jpg 309.32KB
  2. 与算法在降噪与隔振中的实际应用及频谱分析一引.txt 2.01KB
  3. 与算法在降噪与隔振中的应用及频谱分.txt 1.63KB
  4. 与算法在降噪与隔振中的应用及频谱分析一.html 9.86KB
  5. 与算法在降噪和隔振中的实现与频谱.doc 2.52KB
  6. 与算法在降噪和隔振中的实现与频谱分析一引言.txt 2.1KB
  7. 主题代码中的与算法在降噪与隔振中的.doc 2.23KB
  8. 代码算法降噪隔振算法.html 11KB
  9. 关于实现和算法进行降噪和隔振的算.txt 2.09KB
  10. 文章标题基于的与算.html 9.72KB

资源介绍:

"Matlab实现LMS与NLMS算法:降噪、隔振算法及频谱分析,可替换为Excel数据处理与ppt公式详细推导",Matlab代码LMS NLMS算法降噪 隔振算法,外加原信号以及误差信号的频谱分析 可替为自己的Excel数据 带ppt公式详细推导 ,关键词:Matlab代码; LMS算法; NLMS算法; 降噪; 隔振算法; 频谱分析; Excel数据; 公式详细推导。,"LMS与NLMS算法在降噪与隔振中的应用:频谱分析及其Excel数据实现"

<link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/css/base.min.css" rel="stylesheet"/><link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/css/fancy.min.css" rel="stylesheet"/><link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/90341125/2/raw.css" rel="stylesheet"/><div id="sidebar" style="display: none"><div id="outline"></div></div><div class="pf w0 h0" data-page-no="1" id="pf1"><div class="pc pc1 w0 h0"><img alt="" class="bi x0 y0 w1 h1" src="/image.php?url=https://csdnimg.cn/release/download_crawler_static/90341125/bg1.jpg"/><div class="t m0 x1 h2 y1 ff1 fs0 fc0 sc0 ls0 ws0">**LMS<span class="_ _0"> </span><span class="ff2">与<span class="_ _1"> </span></span>NLMS<span class="_ _0"> </span><span class="ff2">算法在降噪和隔振中的<span class="_ _1"> </span></span>Matlab<span class="_ _0"> </span><span class="ff2">实现与频谱分析</span>**</div><div class="t m0 x1 h2 y2 ff2 fs0 fc0 sc0 ls0 ws0">一<span class="ff3">、</span>引言</div><div class="t m0 x1 h2 y3 ff2 fs0 fc0 sc0 ls0 ws0">在信号处理领域<span class="ff4">,<span class="ff1">LMS</span>(</span>最小均方<span class="ff4">)</span>和<span class="_ _1"> </span><span class="ff1">NLMS<span class="ff4">(</span></span>归一化最小均方<span class="ff4">)</span>算法被广泛用于降噪和隔振问题中<span class="ff3">。</span></div><div class="t m0 x1 h2 y4 ff2 fs0 fc0 sc0 ls0 ws0">本文将首先阐述这些算法的基本概念和理论基础<span class="ff4">,</span>接着利用<span class="_ _1"> </span><span class="ff1">Matlab<span class="_ _0"> </span></span>平台<span class="ff4">,</span>给出代码实例实现<span class="ff4">,</span>并且</div><div class="t m0 x1 h2 y5 ff2 fs0 fc0 sc0 ls0 ws0">展示原始信号与误差信号的频谱分析<span class="ff3">。</span>此外<span class="ff4">,</span>我们还可能以实际的数据为基础<span class="ff4">,</span>例如从<span class="_ _1"> </span><span class="ff1">Excel<span class="_ _0"> </span></span>文件中</div><div class="t m0 x1 h2 y6 ff2 fs0 fc0 sc0 ls0 ws0">读取数据进行分析<span class="ff3">。</span>最后<span class="ff4">,</span>将详细推导<span class="_ _1"> </span><span class="ff1">ppt<span class="_ _0"> </span></span>公式以解释算法的核心思想<span class="ff3">。</span></div><div class="t m0 x1 h2 y7 ff2 fs0 fc0 sc0 ls0 ws0">二<span class="ff3">、<span class="ff1">LMS<span class="_ _0"> </span></span></span>与<span class="_ _1"> </span><span class="ff1">NLMS<span class="_ _0"> </span></span>算法基础</div><div class="t m0 x1 h2 y8 ff1 fs0 fc0 sc0 ls0 ws0">1.<span class="_ _2"> </span>LMS<span class="_ _0"> </span><span class="ff2">算法原理<span class="ff4">:</span></span></div><div class="t m0 x1 h2 y9 ff1 fs0 fc0 sc0 ls0 ws0">LMS<span class="_ _0"> </span><span class="ff2">算法是一种自适应滤波器算法<span class="ff4">,</span>其核心思想是不断调整滤波器的系数<span class="ff4">,</span>使得滤波器输出与期望信</span></div><div class="t m0 x1 h2 ya ff2 fs0 fc0 sc0 ls0 ws0">号之间的均方误差最小<span class="ff3">。</span></div><div class="t m0 x1 h2 yb ff1 fs0 fc0 sc0 ls0 ws0">2.<span class="_ _2"> </span>NLMS<span class="_ _0"> </span><span class="ff2">算法原理<span class="ff4">:</span></span></div><div class="t m0 x1 h2 yc ff1 fs0 fc0 sc0 ls0 ws0">NLMS<span class="_ _0"> </span><span class="ff2">算法是<span class="_ _1"> </span></span>LMS<span class="_ _0"> </span><span class="ff2">算法的一种改进版本<span class="ff4">,</span>其区别在于加入了归一化因子<span class="ff4">,</span>可以加快收敛速度并提高稳</span></div><div class="t m0 x1 h2 yd ff2 fs0 fc0 sc0 ls0 ws0">定性<span class="ff3">。</span></div><div class="t m0 x1 h2 ye ff2 fs0 fc0 sc0 ls0 ws0">三<span class="ff3">、<span class="ff1">Matlab<span class="_ _0"> </span></span></span>代码实现</div><div class="t m0 x1 h2 yf ff2 fs0 fc0 sc0 ls0 ws0">以下是<span class="_ _1"> </span><span class="ff1">LMS<span class="_ _0"> </span></span>和<span class="_ _1"> </span><span class="ff1">NLMS<span class="_ _0"> </span></span>算法在<span class="_ _1"> </span><span class="ff1">Matlab<span class="_ _0"> </span></span>中的基本实现框架<span class="ff3">。</span>为简单起见<span class="ff4">,</span>我们仅提供伪代码<span class="ff4">:</span></div><div class="t m0 x1 h3 y10 ff1 fs0 fc0 sc0 ls0 ws0">```matlab</div><div class="t m0 x1 h2 y11 ff1 fs0 fc0 sc0 ls0 ws0">% <span class="ff2">初始化参数</span></div><div class="t m0 x1 h2 y12 ff1 fs0 fc0 sc0 ls0 ws0">N = <span class="ff2">长度</span>(<span class="ff2">期望信号</span>); % <span class="ff2">信号长度</span></div><div class="t m0 x1 h2 y13 ff1 fs0 fc0 sc0 ls0 ws0">M = <span class="ff2">滤波器阶数</span>; % <span class="ff2">滤波器阶数</span></div><div class="t m0 x1 h2 y14 ff1 fs0 fc0 sc0 ls0 ws0">d = <span class="ff2">期望信号</span>; % <span class="ff2">原始降噪信号或隔振期望信号</span></div><div class="t m0 x1 h2 y15 ff1 fs0 fc0 sc0 ls0 ws0">n = 0; % <span class="ff2">迭代次数初始化</span></div><div class="t m0 x1 h2 y16 ff1 fs0 fc0 sc0 ls0 ws0">w = randn(M, 1); % <span class="ff2">随机初始化滤波器权重</span></div><div class="t m0 x1 h2 y17 ff1 fs0 fc0 sc0 ls0 ws0">% LMS<span class="_ _0"> </span><span class="ff2">算法实现</span></div><div class="t m0 x1 h3 y18 ff1 fs0 fc0 sc0 ls0 ws0">for n = 1:N</div><div class="t m0 x2 h2 y19 ff1 fs0 fc0 sc0 ls0 ws0">x = windowed_signal(d, n, M); % <span class="ff2">取窗口内的信号作为输入向量<span class="_ _1"> </span></span>x</div><div class="t m0 x2 h2 y1a ff1 fs0 fc0 sc0 ls0 ws0">y_pred = w' * x; % <span class="ff2">预测输出</span></div><div class="t m0 x2 h2 y1b ff1 fs0 fc0 sc0 ls0 ws0">e = d(n) - y_pred; % <span class="ff2">计算误差信号<span class="_ _1"> </span></span>e</div><div class="t m0 x2 h2 y1c ff1 fs0 fc0 sc0 ls0 ws0">w = w + mu * e * x; % <span class="ff2">更新滤波器权重<span class="ff4">,</span></span>mu<span class="_ _0"> </span><span class="ff2">为步长因子</span></div><div class="t m0 x1 h3 y1d ff1 fs0 fc0 sc0 ls0 ws0">end</div><div class="t m0 x1 h2 y1e ff1 fs0 fc0 sc0 ls0 ws0">% NLMS<span class="_ _0"> </span><span class="ff2">算法实现类似<span class="ff4">,</span>只是加入了归一化因子</span>||x||^2<span class="_ _0"> </span><span class="ff2">的修正<span class="ff3">。</span></span></div></div><div class="pi" data-data='{"ctm":[1.568627,0.000000,0.000000,1.568627,0.000000,0.000000]}'></div></div>
100+评论
captcha