路径规划算法仿真:传统A*(Astar)与改进型A*算法的性能对比及优化细节解析,高效路径规划:改进型A*算法与传统算法对比,含梯度下降与滤波优化,Matlab实现,路径规划算法仿真 A星算法传统
资源内容介绍
路径规划算法仿真:传统A*(Astar)与改进型A*算法的性能对比及优化细节解析,高效路径规划:改进型A*算法与传统算法对比,含梯度下降与滤波优化,Matlab实现,路径规划算法仿真 A星算法传统A*(Astar)算法+改进后的A*算法 Matlab代码 可以固定栅格地图与起点终点 可以进行定量比较改进:①提升搜索效率(引入权重系数)②冗余拐角优化(可显示拐角优化次数)③路径平滑处理(引入梯度下降算法配合S-G滤波器)想要的可以加好友我 先发传统A*代码确认可以运行后补发改进后的A*算法完整程序代码含注释 ,路径规划;A星算法;A*算法改进;Matlab代码;栅格地图;起点终点;定量比较;搜索效率;权重系数;冗余拐角优化;路径平滑处理;梯度下降算法;S-G滤波器;代码注释,基于A星算法的路径规划仿真:传统与改进算法的Matlab比较分析 <link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/css/base.min.css" rel="stylesheet"/><link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/css/fancy.min.css" rel="stylesheet"/><link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/90433112/2/raw.css" rel="stylesheet"/><div id="sidebar" style="display: none"><div id="outline"></div></div><div class="pf w0 h0" data-page-no="1" id="pf1"><div class="pc pc1 w0 h0"><img alt="" class="bi x0 y0 w1 h1" src="/image.php?url=https://csdnimg.cn/release/download_crawler_static/90433112/bg1.jpg"/><div class="t m0 x1 h2 y1 ff1 fs0 fc0 sc0 ls0 ws0">探索算法之路:从传统<span class="_ _0"> </span><span class="ff2">A<span class="_ _0"> </span></span>星到优化后的路径规划</div><div class="t m0 x1 h2 y2 ff1 fs0 fc0 sc0 ls0 ws0">在我们生活或游戏中,<span class="_ _1"></span>常常会遇到各种形式的路径规划问题。<span class="_ _1"></span>而其中,<span class="_ _1"></span><span class="ff2">A<span class="_ _0"> </span><span class="ff1">星算法以其出色的</span></span></div><div class="t m0 x1 h2 y3 ff1 fs0 fc0 sc0 ls0 ws0">效率和<span class="_ _2"></span>可靠性<span class="_ _2"></span>成为了<span class="_ _2"></span>许多应<span class="_ _2"></span>用中的<span class="_ _2"></span>首选。<span class="_ _2"></span>今天,<span class="_ _2"></span>让我们<span class="_ _2"></span>一同探<span class="_ _2"></span>讨一下<span class="_ _2"></span>传统的<span class="_ _3"> </span><span class="ff2">A<span class="_"> </span></span>星算法以<span class="_ _2"></span>及</div><div class="t m0 x1 h2 y4 ff1 fs0 fc0 sc0 ls0 ws0">它的几种改进版本,以及如何通过<span class="_ _0"> </span><span class="ff2">Matlab<span class="_ _0"> </span></span>来仿真和比较它们的效果。</div><div class="t m0 x1 h2 y5 ff1 fs0 fc0 sc0 ls0 ws0">一、传统<span class="_ _0"> </span><span class="ff2">A<span class="_ _0"> </span></span>星算法简介</div><div class="t m0 x1 h2 y6 ff2 fs0 fc0 sc0 ls0 ws0">A<span class="_ _0"> </span><span class="ff1">星算法是一种启发式搜索算法,<span class="_ _1"></span>在导航系统、<span class="_ _1"></span>游戏设计、<span class="_ _1"></span>地图编辑等多个领域中得到了广</span></div><div class="t m0 x1 h2 y7 ff1 fs0 fc0 sc0 ls0 ws0">泛的<span class="_ _2"></span>应用。<span class="_ _2"></span>在寻<span class="_ _2"></span>找路<span class="_ _2"></span>径的过<span class="_ _2"></span>程中<span class="_ _2"></span>,它<span class="_ _2"></span>不仅能<span class="_ _2"></span>够保<span class="_ _2"></span>持很<span class="_ _2"></span>高的搜<span class="_ _2"></span>索效<span class="_ _2"></span>率,<span class="_ _2"></span>还结合<span class="_ _2"></span>了启<span class="_ _2"></span>发式<span class="_ _2"></span>策略,</div><div class="t m0 x1 h2 y8 ff1 fs0 fc0 sc0 ls0 ws0">大大提升了寻找最短路径的准确性。</div><div class="t m0 x1 h2 y9 ff1 fs0 fc0 sc0 ls0 ws0">二、<span class="ff2">A<span class="_ _0"> </span></span>星算法的<span class="_ _0"> </span><span class="ff2">Matlab<span class="_ _0"> </span></span>实现</div><div class="t m0 x1 h2 ya ff1 fs0 fc0 sc0 ls0 ws0">在<span class="_ _0"> </span><span class="ff2">Matlab<span class="_ _0"> </span></span>中,我们可以创建一个简单的栅格地图,<span class="_ _4"></span>并设定起点和终点。以下是一段传统<span class="_ _0"> </span><span class="ff2">A</span></div><div class="t m0 x1 h2 yb ff1 fs0 fc0 sc0 ls0 ws0">星算法的<span class="_ _0"> </span><span class="ff2">Matlab<span class="_ _0"> </span></span>代码示例:</div><div class="t m0 x1 h2 yc ff2 fs0 fc0 sc0 ls0 ws0">```matlab</div><div class="t m0 x1 h2 yd ff2 fs0 fc0 sc0 ls0 ws0">% <span class="_ _5"> </span><span class="ff1">初始化地图和起点终点</span></div><div class="t m0 x1 h2 ye ff2 fs0 fc0 sc0 ls0 ws0">% ...<span class="ff1">(此处省略代码)</span></div><div class="t m0 x1 h2 yf ff2 fs0 fc0 sc0 ls0 ws0">function AstarPath(start, end)</div><div class="t m0 x1 h2 y10 ff2 fs0 fc0 sc0 ls0 ws0"> <span class="_ _6"> </span>% <span class="_ _5"> </span><span class="ff1">初始化<span class="_ _0"> </span></span>A<span class="_ _0"> </span><span class="ff1">星算法</span></div><div class="t m0 x1 h2 y11 ff2 fs0 fc0 sc0 ls0 ws0"> <span class="_ _6"> </span>openList = [start]; <span class="_ _7"> </span>% <span class="_ _5"> </span><span class="ff1">开放列表(待搜索的节点)</span></div><div class="t m0 x1 h2 y12 ff2 fs0 fc0 sc0 ls0 ws0"> <span class="_ _6"> </span>closedList = []; <span class="_ _7"> </span>% <span class="_ _5"> </span><span class="ff1">封闭列表(已搜索过的节点)</span></div><div class="t m0 x1 h2 y13 ff2 fs0 fc0 sc0 ls0 ws0"> <span class="_ _6"> </span>costTable = ones(1:gridSize) * Inf; <span class="_ _7"> </span>% <span class="_ _5"> </span><span class="ff1">代价表初始化(假设无通路则为无穷大)</span></div><div class="t m0 x1 h2 y14 ff2 fs0 fc0 sc0 ls0 ws0"> <span class="_ _6"> </span>prevNodeTable = infiKeyCell; <span class="_ _7"> </span>% <span class="_ _5"> </span><span class="ff1">前一节点表</span></div><div class="t m0 x1 h2 y15 ff2 fs0 fc0 sc0 ls0 ws0"> <span class="_ _6"> </span>g(start) = 0; <span class="_ _7"> </span>% <span class="_ _5"> </span><span class="ff1">从起点的实际代价为<span class="_ _0"> </span></span>0</div><div class="t m0 x1 h2 y16 ff2 fs0 fc0 sc0 ls0 ws0"> <span class="_ _6"> </span>f(start) = g(start) + heuristic(start, end); <span class="_ _7"> </span>% <span class="_ _5"> </span><span class="ff1">从起点的估计代价为启发式值</span></div><div class="t m0 x1 h2 y17 ff2 fs0 fc0 sc0 ls0 ws0"> <span class="_ _6"> </span>while ~isempty(openList) <span class="_ _7"> </span>% <span class="_ _5"> </span><span class="ff1">循环直到找到终点或无解</span></div><div class="t m0 x1 h2 y18 ff2 fs0 fc0 sc0 ls0 ws0"> <span class="_ _8"> </span>currentNode = minNode(f); <span class="_ _7"> </span>% <span class="_ _5"> </span><span class="ff1">选择当前代价最小的节点作为当前节点</span></div><div class="t m0 x1 h2 y19 ff2 fs0 fc0 sc0 ls0 ws0"> <span class="_ _8"> </span>if currentNode == end <span class="_ _7"> </span>% <span class="_ _5"> </span><span class="ff1">如果当前节点是终点,则结束循环</span></div><div class="t m0 x1 h2 y1a ff2 fs0 fc0 sc0 ls0 ws0"> <span class="_ _9"> </span>break;</div><div class="t m0 x1 h2 y1b ff2 fs0 fc0 sc0 ls0 ws0"> <span class="_ _8"> </span>end</div><div class="t m0 x1 h2 y1c ff2 fs0 fc0 sc0 ls0 ws0"> <span class="_ _8"> </span>% ...<span class="ff1">(此处省略其他代码)</span></div><div class="t m0 x1 h2 y1d ff2 fs0 fc0 sc0 ls0 ws0">end</div><div class="t m0 x1 h2 y1e ff2 fs0 fc0 sc0 ls0 ws0">```</div><div class="t m0 x1 h2 y1f ff1 fs0 fc0 sc0 ls0 ws0">(注:以上代码仅为框架,具体实现细节需根据实际情况进行填充和完善。<span class="_ _a"></span>)</div><div class="t m0 x1 h2 y20 ff1 fs0 fc0 sc0 ls0 ws0">三、<span class="ff2">A<span class="_ _0"> </span></span>星算法的改进方向与效果</div><div class="t m0 x1 h2 y21 ff1 fs0 fc0 sc0 ls0 ws0">为了更<span class="_ _2"></span>好地应<span class="_ _2"></span>对不同<span class="_ _2"></span>场景的<span class="_ _2"></span>路径规<span class="_ _2"></span>划需求<span class="_ _2"></span>,研究<span class="_ _2"></span>者们对<span class="_ _3"> </span><span class="ff2">A<span class="_"> </span></span>星算法进<span class="_ _2"></span>行了各<span class="_ _2"></span>种改进<span class="_ _2"></span>。下面<span class="_ _2"></span>是</div><div class="t m0 x1 h2 y22 ff1 fs0 fc0 sc0 ls0 ws0">几个主要改进方向的简单介绍及仿真效果。</div></div><div class="pi" data-data='{"ctm":[1.611830,0.000000,0.000000,1.611830,0.000000,0.000000]}'></div></div>