基于注意力机制(CNN-RNN-Attention)的时间序列预测程序:高精度风电功率与电力负荷预测代码实现,基于CNN-RNN-Attention注意力机制的时间序列预测程序:高精度风电功率与电力负
资源内容介绍
基于注意力机制(CNN-RNN-Attention)的时间序列预测程序:高精度风电功率与电力负荷预测代码实现,基于CNN-RNN-Attention注意力机制的时间序列预测程序:高精度风电功率与电力负荷预测代码实现,基于加注意力机制(CNN-RNN-Attention)的时间序列预测程序,预测精度很高。可用于做风电功率预测,电力负荷预测等等标记注释清楚,可直接数据运行。代码实现训练与测试精度分析。,关键词:注意力机制(CNN-RNN-Attention); 时间序列预测程序; 预测精度高; 风电功率预测; 电力负荷预测; 标记注释; 代码实现; 训练与测试精度分析。,基于注意力机制的CNN-RNN时间序列预测模型:风电功率及电力负荷高精度预测程序 <link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/css/base.min.css" rel="stylesheet"/><link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/css/fancy.min.css" rel="stylesheet"/><link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/90432019/2/raw.css" rel="stylesheet"/><div id="sidebar" style="display: none"><div id="outline"></div></div><div class="pf w0 h0" data-page-no="1" id="pf1"><div class="pc pc1 w0 h0"><img alt="" class="bi x0 y0 w1 h1" src="/image.php?url=https://csdnimg.cn/release/download_crawler_static/90432019/bg1.jpg"/><div class="t m0 x1 h2 y1 ff1 fs0 fc0 sc0 ls0 ws0">**<span class="ff2">深度学习之风:基于注意力机制的<span class="_ _0"> </span></span>CNN-RNN<span class="_ _0"> </span><span class="ff2">模型在时间序列预测中的应用</span>**</div><div class="t m0 x1 h2 y2 ff2 fs0 fc0 sc0 ls0 ws0">在数字化和智能化的今天,<span class="_ _1"></span>时间序列预测已经成为众多领域的重要课题。<span class="_ _1"></span>今天,<span class="_ _1"></span>我们将探讨</div><div class="t m0 x1 h2 y3 ff2 fs0 fc0 sc0 ls0 ws0">一个<span class="_ _2"></span>基于<span class="_ _2"></span>加注<span class="_ _2"></span>意力<span class="_ _2"></span>机制<span class="_ _2"></span>(<span class="ff1">CNN-RNN-Attention<span class="_ _2"></span></span>)的<span class="_ _2"></span>时间<span class="_ _2"></span>序列<span class="_ _2"></span>预测<span class="_ _2"></span>程序<span class="_ _2"></span>,它<span class="_ _2"></span>不仅<span class="_ _2"></span>在理<span class="_ _2"></span>论上<span class="_ _2"></span>具</div><div class="t m0 x1 h2 y4 ff2 fs0 fc0 sc0 ls0 ws0">有先进性,<span class="_ _1"></span>更在实际应用中展现出了极高的预测精度,<span class="_ _1"></span>适用于风电功率预测、<span class="_ _1"></span>电力负荷预测</div><div class="t m0 x1 h2 y5 ff2 fs0 fc0 sc0 ls0 ws0">等多种场景。</div><div class="t m0 x1 h2 y6 ff2 fs0 fc0 sc0 ls0 ws0">一、程序概述</div><div class="t m0 x1 h2 y7 ff2 fs0 fc0 sc0 ls0 ws0">这款程序通过深度学习技术,整合了卷积神经网络(<span class="ff1">CN<span class="_ _3"></span>N<span class="ff2">)<span class="_ _4"></span>、循环神经网络(<span class="ff1">R<span class="_ _3"></span>NN<span class="ff2">)和注意</span></span></span></span></div><div class="t m0 x1 h2 y8 ff2 fs0 fc0 sc0 ls0 ws0">力机制,<span class="_ _5"></span>共同构成一个强大的时间序列预测模型。<span class="_ _5"></span>我们的程序旨在捕捉时间序列数据中的复</div><div class="t m0 x1 h2 y9 ff2 fs0 fc0 sc0 ls0 ws0">杂模式和依赖关系,从而实现高精度的预测。</div><div class="t m0 x1 h2 ya ff2 fs0 fc0 sc0 ls0 ws0">二、模型结构</div><div class="t m0 x1 h2 yb ff2 fs0 fc0 sc0 ls0 ws0">我们的模型以<span class="_ _0"> </span><span class="ff1">CNN<span class="_ _0"> </span></span>作为特征提取器,通过卷积操作捕捉时间序列的局部特征。<span class="_ _3"></span>随后,<span class="_ _3"></span><span class="ff1">RNN</span></div><div class="t m0 x1 h2 yc ff2 fs0 fc0 sc0 ls0 ws0">接管这些特征,<span class="_ _6"></span>学习时间依赖关系。<span class="_ _6"></span>特别地,<span class="_ _6"></span>我们加入了注意力机制,<span class="_ _6"></span>使得模型能够在预测</div><div class="t m0 x1 h2 yd ff2 fs0 fc0 sc0 ls0 ws0">时重点关注对结果影响最大的时间点或特征。<span class="_ _5"></span>这样的结构不仅提升了模型的表达能力,<span class="_ _5"></span>也增</div><div class="t m0 x1 h2 ye ff2 fs0 fc0 sc0 ls0 ws0">强了其对于不同场景的适应性。</div><div class="t m0 x1 h2 yf ff2 fs0 fc0 sc0 ls0 ws0">三、标记与注释</div><div class="t m0 x1 h2 y10 ff2 fs0 fc0 sc0 ls0 ws0">在代码实现中,<span class="_ _1"></span>我们注重标记与注释的清晰性,<span class="_ _1"></span>确保每一行代码、<span class="_ _1"></span>每一个模块都有明确的注</div><div class="t m0 x1 h2 y11 ff2 fs0 fc0 sc0 ls0 ws0">释。<span class="_ _6"></span>这样,<span class="_ _6"></span>即使是非专业人士也能快速理解代码的运行逻辑和功能。<span class="_ _6"></span>同时,<span class="_ _6"></span>我们提供了数据</div><div class="t m0 x1 h2 y12 ff2 fs0 fc0 sc0 ls0 ws0">接口,用户可以方便地替换数据,进行模型的训练和测试。</div><div class="t m0 x1 h2 y13 ff2 fs0 fc0 sc0 ls0 ws0">四、代码实现与训练</div><div class="t m0 x1 h2 y14 ff2 fs0 fc0 sc0 ls0 ws0">以下是部分代码实现的关键片段:</div><div class="t m0 x1 h2 y15 ff1 fs0 fc0 sc0 ls0 ws0">```python</div><div class="t m0 x1 h2 y16 ff1 fs0 fc0 sc0 ls0 ws0"># <span class="_ _7"> </span><span class="ff2">导入所需库</span></div><div class="t m0 x1 h2 y17 ff1 fs0 fc0 sc0 ls0 ws0">import tensorflow as tf</div><div class="t m0 x1 h2 y18 ff1 fs0 fc0 sc0 ls0 ws0"># <span class="_ _7"> </span><span class="ff2">定义模型结构</span></div><div class="t m0 x1 h2 y19 ff1 fs0 fc0 sc0 ls0 ws0">class TimeSeriesPredictor(tf.keras.Model):</div><div class="t m0 x1 h2 y1a ff1 fs0 fc0 sc0 ls0 ws0"> <span class="_ _8"> </span>def __init__(self, ...):</div><div class="t m0 x1 h2 y1b ff1 fs0 fc0 sc0 ls0 ws0"> <span class="_ _9"> </span>super(TimeSeriesPredictor, self).__init__()</div><div class="t m0 x1 h2 y1c ff1 fs0 fc0 sc0 ls0 ws0"> <span class="_ _9"> </span># CNN<span class="_ _7"> </span><span class="ff2">部分</span></div><div class="t m0 x1 h2 y1d ff1 fs0 fc0 sc0 ls0 ws0"> <span class="_ _9"> </span>self.conv1 = ... </div><div class="t m0 x1 h2 y1e ff1 fs0 fc0 sc0 ls0 ws0"> <span class="_ _9"> </span># RNN<span class="_ _7"> </span><span class="ff2">部分</span></div><div class="t m0 x1 h2 y1f ff1 fs0 fc0 sc0 ls0 ws0"> <span class="_ _9"> </span>self.rnn = ... </div><div class="t m0 x1 h2 y20 ff1 fs0 fc0 sc0 ls0 ws0"> <span class="_ _9"> </span># <span class="_ _7"> </span><span class="ff2">注意力机制部分</span></div><div class="t m0 x1 h2 y21 ff1 fs0 fc0 sc0 ls0 ws0"> <span class="_ _9"> </span>self.attention = ... </div><div class="t m0 x1 h2 y22 ff1 fs0 fc0 sc0 ls0 ws0"> </div></div><div class="pi" data-data='{"ctm":[1.611830,0.000000,0.000000,1.611830,0.000000,0.000000]}'></div></div>