基于最小支持向量机LSSVM的多列输入单列输出拟合预测建模-详细注释,即插即用,最小支持向量机LSSVM多列输入单列输出拟合预测建模教程:详细注释,数据替换即用,利用最小支持向量机LSSVM做拟合预
资源内容介绍
基于最小支持向量机LSSVM的多列输入单列输出拟合预测建模——详细注释,即插即用,最小支持向量机LSSVM多列输入单列输出拟合预测建模教程:详细注释,数据替换即用,利用最小支持向量机LSSVM做拟合预测建模,数据要求是多列输入单列输出做拟合预测建模,程序内注释详细,直接替数据就可以用,LSSVM; 多列输入单列输出; 拟合预测建模; 程序内注释详细; 替换数据即可使用;,LSSVM拟合预测建模:多输入单输出数据程序化处理,注释详尽可快速替换数据 <link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/css/base.min.css" rel="stylesheet"/><link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/css/fancy.min.css" rel="stylesheet"/><link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/90430519/2/raw.css" rel="stylesheet"/><div id="sidebar" style="display: none"><div id="outline"></div></div><div class="pf w0 h0" data-page-no="1" id="pf1"><div class="pc pc1 w0 h0"><img alt="" class="bi x0 y0 w1 h1" src="/image.php?url=https://csdnimg.cn/release/download_crawler_static/90430519/bg1.jpg"/><div class="t m0 x1 h2 y1 ff1 fs0 fc0 sc0 ls0 ws0">利用<span class="_ _0"> </span><span class="ff2">LSSVM<span class="_"> </span></span>算法实现多输入单输出数据拟合预测建模</div><div class="t m0 x1 h2 y2 ff1 fs0 fc0 sc0 ls0 ws0">在数据分析和机器学习领域,<span class="_ _1"></span>拟合预测建模是一项重要的任务。<span class="_ _1"></span>随着技术的发展,<span class="_ _1"></span>最小支持</div><div class="t m0 x1 h2 y3 ff1 fs0 fc0 sc0 ls0 ws0">向量机<span class="_ _2"></span>(<span class="ff2">LSSVM</span>)<span class="_ _2"></span>作为一种优秀的机器学习算法,<span class="_ _2"></span>逐渐受到了广泛关注。<span class="_ _2"></span>今天我们将一起探</div><div class="t m0 x1 h2 y4 ff1 fs0 fc0 sc0 ls0 ws0">讨如何利用<span class="_ _0"> </span><span class="ff2">LSSVM<span class="_"> </span></span>算法进行多列输入单列输出的数据拟合预测建模。</div><div class="t m0 x1 h2 y5 ff1 fs0 fc0 sc0 ls0 ws0">一、背景介绍</div><div class="t m0 x1 h2 y6 ff2 fs0 fc0 sc0 ls0 ws0">LSSVM<span class="_"> </span><span class="ff1">算法是一种<span class="_ _3"></span>基于统<span class="_ _3"></span>计学习理<span class="_ _3"></span>论的机<span class="_ _3"></span>器学习方<span class="_ _3"></span>法,它<span class="_ _3"></span>通过构建<span class="_ _3"></span>超平面<span class="_ _3"></span>或曲面来<span class="_ _3"></span>对数据</span></div><div class="t m0 x1 h2 y7 ff1 fs0 fc0 sc0 ls0 ws0">进行<span class="_ _3"></span>分类<span class="_ _3"></span>或回归<span class="_ _3"></span>分析<span class="_ _3"></span>。在<span class="_ _3"></span>拟合预<span class="_ _3"></span>测建<span class="_ _3"></span>模中<span class="_ _3"></span>,我<span class="_ _3"></span>们通常<span class="_ _3"></span>需要<span class="_ _3"></span>处理<span class="_ _3"></span>多列<span class="_ _3"></span>输入和<span class="_ _3"></span>单列<span class="_ _3"></span>输出<span class="_ _3"></span>的情<span class="_ _3"></span>况,</div><div class="t m0 x1 h2 y8 ff1 fs0 fc0 sc0 ls0 ws0">即多输入单输出(<span class="ff2">MISO</span>)问题。</div><div class="t m0 x1 h2 y9 ff1 fs0 fc0 sc0 ls0 ws0">二、数据准备</div><div class="t m0 x1 h2 ya ff1 fs0 fc0 sc0 ls0 ws0">在进行<span class="_ _0"> </span><span class="ff2">LSSVM<span class="_"> </span></span>建模之前,我们需要准备好数据集。数据<span class="_ _3"></span>集应包含多列输入特征和一列输<span class="_ _3"></span>出</div><div class="t m0 x1 h2 yb ff1 fs0 fc0 sc0 ls0 ws0">目标值。<span class="_ _1"></span>例如,<span class="_ _1"></span>我们可以从某个实验或观测中收集到这样的数据集,<span class="_ _1"></span>并对其进行预处理和清</div><div class="t m0 x1 h2 yc ff1 fs0 fc0 sc0 ls0 ws0">洗。</div><div class="t m0 x1 h2 yd ff1 fs0 fc0 sc0 ls0 ws0">三、<span class="ff2">LSSVM<span class="_"> </span></span>算法原理</div><div class="t m0 x1 h2 ye ff2 fs0 fc0 sc0 ls0 ws0">LSSVM<span class="_"> </span><span class="ff1">算法的核心<span class="_ _3"></span>思想是<span class="_ _3"></span>将原始数<span class="_ _3"></span>据映射<span class="_ _3"></span>到高维空<span class="_ _3"></span>间中,<span class="_ _3"></span>然后在高<span class="_ _3"></span>维空间<span class="_ _3"></span>中寻找一<span class="_ _3"></span>个超平</span></div><div class="t m0 x1 h2 yf ff1 fs0 fc0 sc0 ls0 ws0">面来拟合数据。<span class="_ _1"></span>具体来说,<span class="_ _1"></span>算法通过引入核函数来处理非线性问题,<span class="_ _1"></span>通过正则化项来控制模</div><div class="t m0 x1 h2 y10 ff1 fs0 fc0 sc0 ls0 ws0">型的复杂度。<span class="_ _4"></span>最终目标是寻找一个权值向量和偏置项,<span class="_ _4"></span>使得所有样本点到超平面的距离之和</div><div class="t m0 x1 h2 y11 ff1 fs0 fc0 sc0 ls0 ws0">最小。</div><div class="t m0 x1 h2 y12 ff1 fs0 fc0 sc0 ls0 ws0">四、实现步骤</div><div class="t m0 x1 h2 y13 ff1 fs0 fc0 sc0 ls0 ws0">下面我们将以<span class="_ _0"> </span><span class="ff2">Python<span class="_"> </span></span>语言为例,<span class="_ _5"></span>展示如何使用<span class="_ _0"> </span><span class="ff2">LSSVM<span class="_"> </span></span>算法进行多输入单输出的数据拟合预</div><div class="t m0 x1 h2 y14 ff1 fs0 fc0 sc0 ls0 ws0">测建模<span class="_ _3"></span>。首先<span class="_ _3"></span>需要安<span class="_ _3"></span>装相关<span class="_ _3"></span>的库(<span class="_ _3"></span>如<span class="_ _0"> </span><span class="ff2">numpy, scikit-learn<span class="_"> </span></span>等)<span class="_ _5"></span>,然后按<span class="_ _3"></span>照以下<span class="_ _3"></span>步骤进<span class="_ _3"></span>行操作<span class="_ _3"></span>:</div><div class="t m0 x1 h2 y15 ff2 fs0 fc0 sc0 ls0 ws0">1. <span class="_"> </span><span class="ff1">导入<span class="_ _3"></span>所<span class="_ _3"></span>需<span class="_ _3"></span>库<span class="_ _3"></span>:<span class="_ _3"></span></span>`import <span class="_ _3"></span>numpy <span class="_ _3"></span>as <span class="_ _3"></span>np`<span class="_ _3"></span><span class="ff1">,</span>`import <span class="_ _3"></span>sklssvm <span class="_ _3"></span>as <span class="_ _3"></span>lssvm`<span class="_ _3"></span><span class="ff1">(<span class="_ _3"></span>需<span class="_ _3"></span>确<span class="_ _3"></span>保<span class="_ _3"></span>已<span class="_ _3"></span>安<span class="_ _3"></span>装<span class="_ _6"> </span></span>sklssvm</div><div class="t m0 x1 h2 y16 ff1 fs0 fc0 sc0 ls0 ws0">库)<span class="_ _7"></span>。</div><div class="t m0 x1 h2 y17 ff2 fs0 fc0 sc0 ls0 ws0">2. <span class="_ _8"> </span><span class="ff1">准备数据集:将多列输入特征和一列输出目标值分别存储在<span class="_ _0"> </span></span>NumPy<span class="_ _0"> </span><span class="ff1">数组中。</span></div><div class="t m0 x1 h2 y18 ff2 fs0 fc0 sc0 ls0 ws0">3. <span class="_ _8"> </span><span class="ff1">划分数据集为训练集和测试集。</span></div><div class="t m0 x1 h2 y19 ff2 fs0 fc0 sc0 ls0 ws0">4. <span class="_ _8"> </span><span class="ff1">创建<span class="_ _0"> </span></span>LSSVM<span class="_"> </span><span class="ff1">模型对象,并设置相关参数(如核函数类型、正则化参数等)<span class="_ _7"></span>。</span></div><div class="t m0 x1 h2 y1a ff2 fs0 fc0 sc0 ls0 ws0">5. <span class="_"> </span><span class="ff1">使用<span class="_ _9"></span>训<span class="_ _3"></span>练<span class="_ _3"></span>集<span class="_ _3"></span>对<span class="_ _3"></span>模<span class="_ _3"></span>型<span class="_ _3"></span>进<span class="_ _3"></span>行<span class="_ _9"></span>训<span class="_ _3"></span>练<span class="_ _3"></span>,<span class="_ _3"></span>并<span class="_ _3"></span>输<span class="_ _3"></span>出<span class="_ _3"></span>训<span class="_ _3"></span>练<span class="_ _9"></span>过<span class="_ _3"></span>程<span class="_ _3"></span>中<span class="_ _3"></span>的<span class="_ _3"></span>相<span class="_ _3"></span>关<span class="_ _3"></span>信<span class="_ _3"></span>息<span class="_ _9"></span>(<span class="_ _3"></span>如<span class="_ _3"></span>迭<span class="_ _3"></span>代<span class="_ _3"></span>次<span class="_ _3"></span>数<span class="_ _3"></span>、<span class="_ _3"></span>训<span class="_ _9"></span>练<span class="_ _3"></span>误<span class="_ _3"></span>差</span></div><div class="t m0 x1 h2 y1b ff1 fs0 fc0 sc0 ls0 ws0">等)<span class="_ _7"></span>。</div><div class="t m0 x1 h2 y1c ff2 fs0 fc0 sc0 ls0 ws0">6. <span class="_ _8"> </span><span class="ff1">利用训练好的模型对测试集进行预测,并计算预测结果的准确率或误差等指标。</span></div><div class="t m0 x1 h2 y1d ff1 fs0 fc0 sc0 ls0 ws0">示例代码(仅供参考)<span class="_ _7"></span>:</div><div class="t m0 x1 h2 y1e ff2 fs0 fc0 sc0 ls0 ws0">```python</div><div class="t m0 x1 h2 y1f ff2 fs0 fc0 sc0 ls0 ws0"># <span class="_ _8"> </span><span class="ff1">导入所需库</span></div><div class="t m0 x1 h2 y20 ff2 fs0 fc0 sc0 ls0 ws0">import numpy as np</div><div class="t m0 x1 h2 y21 ff2 fs0 fc0 sc0 ls0 ws0">from sklssvm import LSSVMRegressor <span class="_ _a"> </span># <span class="_ _8"> </span><span class="ff1">假设使用的是<span class="_ _0"> </span></span>LSSVM<span class="_"> </span><span class="ff1">回归模型</span></div></div><div class="pi" data-data='{"ctm":[1.611830,0.000000,0.000000,1.611830,0.000000,0.000000]}'></div></div>