基于灰狼算法实现微网孤岛优化调度:经济与环境双重目标下的多元能源模型研究,基于灰狼算法实现的微网孤岛优化调度策略:涵盖多主体与经济环保双重目标的研究,微网孤岛优化调度 matlab编程语言:matl
资源内容介绍
基于灰狼算法实现微网孤岛优化调度:经济与环境双重目标下的多元能源模型研究,基于灰狼算法实现的微网孤岛优化调度策略:涵盖多主体与经济环保双重目标的研究,微网孤岛优化调度 matlab编程语言:matlab内容摘要:采用灰狼算法实现微网孤岛优化调度,考虑风光、微燃机、燃料电池和蓄电池等主体,考虑价格型和激励型需求响应,以经济成本和环境治理成本为目标进行优化,得到优化结果。有详细模型资料,灰狼算法; 微网孤岛优化调度; 风光、微燃机、燃料电池和蓄电池; 价格型和激励型需求响应; 经济成本、环境治理成本; MATLAB; 详细模型资料,基于灰狼算法的微网孤岛优化调度:经济成本与环境治理的协同优化研究 <link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/css/base.min.css" rel="stylesheet"/><link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/css/fancy.min.css" rel="stylesheet"/><link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/90429330/2/raw.css" rel="stylesheet"/><div id="sidebar" style="display: none"><div id="outline"></div></div><div class="pf w0 h0" data-page-no="1" id="pf1"><div class="pc pc1 w0 h0"><img alt="" class="bi x0 y0 w1 h1" src="/image.php?url=https://csdnimg.cn/release/download_crawler_static/90429330/bg1.jpg"/><div class="t m0 x1 h2 y1 ff1 fs0 fc0 sc0 ls0 ws0">微网孤岛优化调度的研究与实现<span class="ff2">——</span>基于灰狼算法的<span class="_ _0"> </span><span class="ff2">Matlab<span class="_ _0"> </span></span>编程</div><div class="t m0 x1 h2 y2 ff1 fs0 fc0 sc0 ls0 ws0">一、引言</div><div class="t m0 x1 h2 y3 ff1 fs0 fc0 sc0 ls0 ws0">随着可再生能源的快速发展,<span class="_ _1"></span>微网作为一种新型的能源供应模式,<span class="_ _1"></span>在电力系统中扮演着越来</div><div class="t m0 x1 h2 y4 ff1 fs0 fc0 sc0 ls0 ws0">越重要的角色。<span class="_ _1"></span>微网孤岛运行模式是微网在面对突发情况时的重要应对策略,<span class="_ _1"></span>而如何实现孤</div><div class="t m0 x1 h2 y5 ff1 fs0 fc0 sc0 ls0 ws0">岛状态下微网的优化调度则是目前研究的热点。<span class="_ _2"></span>本文通过使用灰狼算法实现微网孤岛优化调</div><div class="t m0 x1 h2 y6 ff1 fs0 fc0 sc0 ls0 ws0">度,在<span class="_ _0"> </span><span class="ff2">Matlab<span class="_ _0"> </span></span>环境下进行了建模与计算。</div><div class="t m0 x1 h2 y7 ff1 fs0 fc0 sc0 ls0 ws0">二、问题概述</div><div class="t m0 x1 h2 y8 ff1 fs0 fc0 sc0 ls0 ws0">在微网孤岛运行模式下,<span class="_ _3"></span>主要考虑的能源主体包括风力发电、<span class="_ _3"></span>光伏发电、<span class="_ _3"></span>微燃机、<span class="_ _3"></span>燃料电池</div><div class="t m0 x1 h2 y9 ff1 fs0 fc0 sc0 ls0 ws0">以及蓄电池等。<span class="_ _4"></span>同时,<span class="_ _4"></span>还需考虑价格型和激励型需求响应对微网运行的影响。<span class="_ _4"></span>我们的目标是</div><div class="t m0 x1 h2 ya ff1 fs0 fc0 sc0 ls0 ws0">实现经济成本和环境治理成本的最小化,从而得到最优的调度策略。</div><div class="t m0 x1 h2 yb ff1 fs0 fc0 sc0 ls0 ws0">三、模型建立</div><div class="t m0 x1 h2 yc ff2 fs0 fc0 sc0 ls0 ws0">1. <span class="_ _5"> </span><span class="ff1">定义决策变量:决策变量包括各能源主体的输出功率、需求响应等。</span></div><div class="t m0 x1 h2 yd ff2 fs0 fc0 sc0 ls0 ws0">2. <span class="_ _5"> </span><span class="ff1">目标<span class="_ _6"></span>函数:<span class="_ _6"></span>以经济<span class="_ _6"></span>成本和<span class="_ _6"></span>环境治<span class="_ _6"></span>理成本<span class="_ _6"></span>为目标<span class="_ _6"></span>函数,<span class="_ _6"></span>建立多<span class="_ _6"></span>目标优<span class="_ _6"></span>化模型<span class="_ _6"></span>。其中<span class="_ _6"></span>,经济</span></div><div class="t m0 x1 h2 ye ff1 fs0 fc0 sc0 ls0 ws0">成本包括各能<span class="_ _6"></span>源主体的运<span class="_ _6"></span>行成本和购买<span class="_ _6"></span><span class="ff2">/</span>销售电力<span class="_ _6"></span>的成本;环境<span class="_ _6"></span>治理成本则<span class="_ _6"></span>主要考虑排放<span class="_ _6"></span>物</div><div class="t m0 x1 h2 yf ff1 fs0 fc0 sc0 ls0 ws0">的处理成本。</div><div class="t m0 x1 h2 y10 ff2 fs0 fc0 sc0 ls0 ws0">3. <span class="_ _5"> </span><span class="ff1">约束<span class="_ _6"></span>条件:<span class="_ _6"></span>考虑微<span class="_ _6"></span>网孤岛<span class="_ _6"></span>运行的<span class="_ _6"></span>实际情<span class="_ _6"></span>况,包<span class="_ _6"></span>括能源<span class="_ _6"></span>主体的<span class="_ _6"></span>出力约<span class="_ _6"></span>束、功<span class="_ _6"></span>率平衡<span class="_ _6"></span>约束、</span></div><div class="t m0 x1 h2 y11 ff1 fs0 fc0 sc0 ls0 ws0">需求响应约束等。</div><div class="t m0 x1 h2 y12 ff1 fs0 fc0 sc0 ls0 ws0">四、灰狼算法的应用</div><div class="t m0 x1 h2 y13 ff1 fs0 fc0 sc0 ls0 ws0">灰狼算法是一种新型的优化算法,<span class="_ _4"></span>其灵感来源于灰狼的社会行为。<span class="_ _4"></span>在本文中,<span class="_ _4"></span>我们采用灰狼</div><div class="t m0 x1 h2 y14 ff1 fs0 fc0 sc0 ls0 ws0">算法对建立的模型进行求解。<span class="_ _7"></span>灰狼算法通过模拟灰狼的捕猎行为,<span class="_ _7"></span>实现全局寻优和快速收敛,</div><div class="t m0 x1 h2 y15 ff1 fs0 fc0 sc0 ls0 ws0">适用于解决多目标、多约束的优化问题。</div><div class="t m0 x1 h2 y16 ff1 fs0 fc0 sc0 ls0 ws0">五、<span class="ff2">Matlab<span class="_ _5"> </span></span>编程实现</div><div class="t m0 x1 h2 y17 ff1 fs0 fc0 sc0 ls0 ws0">在<span class="_ _0"> </span><span class="ff2">Matlab<span class="_"> </span></span>环境下,我们根据建立的模型和灰狼算法的原理,编写<span class="_ _6"></span>了相应的程序。程序首先</div><div class="t m0 x1 h2 y18 ff1 fs0 fc0 sc0 ls0 ws0">对输入数据进行预处理,<span class="_ _4"></span>然后调用灰狼算法进行求解,<span class="_ _4"></span>最后输出优化结果。<span class="_ _4"></span>通过多次试验和</div><div class="t m0 x1 h2 y19 ff1 fs0 fc0 sc0 ls0 ws0">调整参数,我们得到了较为满意的结果。</div><div class="t m0 x1 h2 y1a ff1 fs0 fc0 sc0 ls0 ws0">六、结果分析</div><div class="t m0 x1 h2 y1b ff1 fs0 fc0 sc0 ls0 ws0">通过对比优化前后的结果,<span class="_ _2"></span>我们发现采用灰狼算法进行微网孤岛优化调度能够显著降低经济</div><div class="t m0 x1 h2 y1c ff1 fs0 fc0 sc0 ls0 ws0">成本<span class="_ _6"></span>和环<span class="_ _6"></span>境治<span class="_ _6"></span>理<span class="_ _6"></span>成本<span class="_ _6"></span>。同<span class="_ _6"></span>时<span class="_ _6"></span>,优<span class="_ _6"></span>化后<span class="_ _6"></span>的<span class="_ _6"></span>调度<span class="_ _6"></span>策略<span class="_ _6"></span>能够<span class="_ _6"></span>更<span class="_ _6"></span>好地<span class="_ _6"></span>适应<span class="_ _6"></span>微<span class="_ _6"></span>网孤<span class="_ _6"></span>岛运<span class="_ _6"></span>行的<span class="_ _6"></span>实<span class="_ _6"></span>际情<span class="_ _6"></span>况,</div><div class="t m0 x1 h2 y1d ff1 fs0 fc0 sc0 ls0 ws0">提高了微网的运行效率和稳定性。<span class="_ _1"></span>此外,<span class="_ _1"></span>我们还发现价格型和激励型需求响应对微网运行的</div><div class="t m0 x1 h2 y1e ff1 fs0 fc0 sc0 ls0 ws0">影响不可忽视,应在模型中充分考虑。</div><div class="t m0 x1 h2 y1f ff1 fs0 fc0 sc0 ls0 ws0">七、结论</div></div><div class="pi" data-data='{"ctm":[1.611830,0.000000,0.000000,1.611830,0.000000,0.000000]}'></div></div>