基于BES秃鹰算法优化BP神经网络模型的多输入单输出拟合预测系统及其MATLAB程序实现,基于BES秃鹰智能算法的BP神经网络权值和阈值优化MATLAB实现,基于BES秃鹰智能算法优化BP神经网络模型
资源内容介绍
基于BES秃鹰算法优化BP神经网络模型的多输入单输出拟合预测系统及其MATLAB程序实现,基于BES秃鹰智能算法的BP神经网络权值和阈值优化MATLAB实现,基于BES秃鹰智能算法优化BP神经网络模型的权值和阈值做多输入单输出的拟合预测模型。直接替数据就可以用,程序内有详细注释,易于学习。程序是MATLAB语言。,BES秃鹰算法; BP神经网络模型; 权值优化; 阈值优化; 多输入单输出拟合预测模型; MATLAB语言程序。,基于BES秃鹰算法优化的BP神经网络模型:MATLAB程序详解与预测应用 <link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/css/base.min.css" rel="stylesheet"/><link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/css/fancy.min.css" rel="stylesheet"/><link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/90428311/2/raw.css" rel="stylesheet"/><div id="sidebar" style="display: none"><div id="outline"></div></div><div class="pf w0 h0" data-page-no="1" id="pf1"><div class="pc pc1 w0 h0"><img alt="" class="bi x0 y0 w1 h1" src="/image.php?url=https://csdnimg.cn/release/download_crawler_static/90428311/bg1.jpg"/><div class="t m0 x1 h2 y1 ff1 fs0 fc0 sc0 ls0 ws0">基于<span class="_ _0"> </span><span class="ff2">BES<span class="_ _0"> </span></span>秃鹰算法优化<span class="_ _0"> </span><span class="ff2">BP<span class="_ _0"> </span></span>神经网络模型:多输入单输出拟合预测新篇章</div><div class="t m0 x1 h2 y2 ff1 fs0 fc0 sc0 ls0 ws0">在数字化时代,<span class="_ _1"></span>人工智能与机器学习的应用日益广泛,<span class="_ _1"></span>其中神经网络模型更是成为了研究的</div><div class="t m0 x1 h2 y3 ff1 fs0 fc0 sc0 ls0 ws0">热点。<span class="_ _2"></span>今天,<span class="_ _2"></span>我们将探讨一种基于<span class="_ _0"> </span><span class="ff2">BES<span class="_"> </span></span>秃鹰算法优化<span class="_ _0"> </span><span class="ff2">B<span class="_ _2"></span>P<span class="_"> </span><span class="ff1">神经网络模型的方法,<span class="_ _2"></span>以实现多输</span></span></div><div class="t m0 x1 h2 y4 ff1 fs0 fc0 sc0 ls0 ws0">入单输出的拟合预测。</div><div class="t m0 x1 h2 y5 ff1 fs0 fc0 sc0 ls0 ws0">一、引言</div><div class="t m0 x1 h2 y6 ff2 fs0 fc0 sc0 ls0 ws0">BP<span class="ff1">(</span>Back Propagation<span class="ff1">)<span class="_ _3"></span>神经网络是一种通过反向传播调整权值和阈值以实现拟合的非线性</span></div><div class="t m0 x1 h2 y7 ff1 fs0 fc0 sc0 ls0 ws0">模型。<span class="_ _4"></span>然而,<span class="_ _4"></span>传统的<span class="_ _0"> </span><span class="ff2">BP<span class="_ _0"> </span></span>算法在权值和阈值的调整上存在一定局限性,<span class="_ _4"></span>可能导致训练时间长、</div><div class="t m0 x1 h2 y8 ff1 fs0 fc0 sc0 ls0 ws0">易陷入局部最优等问题。<span class="_ _2"></span>为此,<span class="_ _2"></span>我们引入了<span class="_ _0"> </span><span class="ff2">BES<span class="_"> </span></span>秃鹰算法,<span class="_ _2"></span>以期对<span class="_ _0"> </span><span class="ff2">BP<span class="_ _5"> </span></span>神经网络模型进行优</div><div class="t m0 x1 h2 y9 ff1 fs0 fc0 sc0 ls0 ws0">化。</div><div class="t m0 x1 h2 ya ff1 fs0 fc0 sc0 ls0 ws0">二、<span class="ff2">BES<span class="_ _0"> </span></span>秃鹰算法简介</div><div class="t m0 x1 h2 yb ff2 fs0 fc0 sc0 ls0 ws0">BES<span class="_ _0"> </span><span class="ff1">秃鹰算法是一种优化算法,<span class="_ _6"></span>其核心思想是通过模拟秃鹰的捕食行为,<span class="_ _6"></span>在解空间中寻找最</span></div><div class="t m0 x1 h2 yc ff1 fs0 fc0 sc0 ls0 ws0">优解<span class="_ _7"></span>。该<span class="_ _7"></span>算法<span class="_ _7"></span>具有<span class="_ _7"></span>全局<span class="_ _7"></span>搜索<span class="_ _7"></span>能力<span class="_ _7"></span>强、<span class="_ _7"></span>收敛<span class="_ _7"></span>速度<span class="_ _7"></span>快等<span class="_ _7"></span>特点<span class="_ _7"></span>,因<span class="_ _7"></span>此在<span class="_ _7"></span>优化<span class="_ _7"></span>问题<span class="_ _7"></span>上具<span class="_ _7"></span>有较<span class="_ _7"></span>大优<span class="_ _7"></span>势。</div><div class="t m0 x1 h2 yd ff1 fs0 fc0 sc0 ls0 ws0">三、模型构建</div><div class="t m0 x1 h2 ye ff1 fs0 fc0 sc0 ls0 ws0">我们构建了一个多输入单输出的<span class="_ _0"> </span><span class="ff2">BP<span class="_ _5"> </span></span>神经网络模型,<span class="_ _3"></span>并利用<span class="_ _5"> </span><span class="ff2">BES<span class="_"> </span></span>秃鹰算法对模型的权值和阈</div><div class="t m0 x1 h2 yf ff1 fs0 fc0 sc0 ls0 ws0">值进行优化。<span class="_ _2"></span>具体而言,<span class="_ _2"></span>我们将<span class="_ _0"> </span><span class="ff2">BES<span class="_"> </span></span>秃鹰算法与<span class="_ _5"> </span><span class="ff2">BP<span class="_ _0"> </span></span>神经网络的训练过程相结合,<span class="_ _2"></span>通过不断</div><div class="t m0 x1 h2 y10 ff1 fs0 fc0 sc0 ls0 ws0">调整权值和阈值,使神经网络能够更好地拟合目标函数。</div><div class="t m0 x1 h2 y11 ff1 fs0 fc0 sc0 ls0 ws0">四、程序实现</div><div class="t m0 x1 h2 y12 ff1 fs0 fc0 sc0 ls0 ws0">下面是一个基于<span class="_ _0"> </span><span class="ff2">MATLAB<span class="_ _0"> </span></span>语言的程序示例,程序中详细注释了每个步骤,便于学习。</div><div class="t m0 x1 h2 y13 ff2 fs0 fc0 sc0 ls0 ws0">```matlab</div><div class="t m0 x1 h2 y14 ff2 fs0 fc0 sc0 ls0 ws0">% <span class="_ _5"> </span><span class="ff1">定义输入数据、目标数据等</span></div><div class="t m0 x1 h2 y15 ff2 fs0 fc0 sc0 ls0 ws0">inputData = ...; % <span class="_ _5"> </span><span class="ff1">输入数据,可以是多维数组</span></div><div class="t m0 x1 h2 y16 ff2 fs0 fc0 sc0 ls0 ws0">targetData = ...; % <span class="_ _5"> </span><span class="ff1">目标数据,即我们希望神经网络拟合的数据</span></div><div class="t m0 x1 h2 y17 ff2 fs0 fc0 sc0 ls0 ws0">% <span class="_ _5"> </span><span class="ff1">初始化<span class="_ _0"> </span></span>BP<span class="_ _5"> </span><span class="ff1">神经网络结构,包括隐藏层节点数等</span></div><div class="t m0 x1 h2 y18 ff2 fs0 fc0 sc0 ls0 ws0">net = fitnet(...); % <span class="_ _5"> </span><span class="ff1">根据实际需求设置网络结构</span></div><div class="t m0 x1 h2 y19 ff2 fs0 fc0 sc0 ls0 ws0">% <span class="_ _5"> </span><span class="ff1">利用<span class="_ _0"> </span></span>BES<span class="_ _0"> </span><span class="ff1">秃鹰算法优化权值和阈值</span></div><div class="t m0 x1 h2 y1a ff2 fs0 fc0 sc0 ls0 ws0">besEagleSearch('objectiveFunction', <span class="_ _8"></span>@calculateError, <span class="_ _8"> </span>'input', <span class="_ _8"> </span>inputData, <span class="_ _8"> </span>'target', <span class="_ _8"> </span>targetData, </div><div class="t m0 x1 h2 y1b ff2 fs0 fc0 sc0 ls0 ws0">'network', net);</div><div class="t m0 x1 h2 y1c ff2 fs0 fc0 sc0 ls0 ws0">% <span class="_ _5"> </span><span class="ff1">计算误差函数,此处以均方误差为例</span></div><div class="t m0 x1 h2 y1d ff2 fs0 fc0 sc0 ls0 ws0">function error = calculateError(net, inputData, targetData)</div><div class="t m0 x1 h2 y1e ff2 fs0 fc0 sc0 ls0 ws0"> <span class="_ _9"> </span>output = net(inputData); % <span class="_ _5"> </span><span class="ff1">神经网络输出</span></div></div><div class="pi" data-data='{"ctm":[1.611830,0.000000,0.000000,1.611830,0.000000,0.000000]}'></div></div>