直流配电网牛顿拉夫逊法潮流计算MATLAB程序详解:节点电压与支路功率有名值计算,直流配电网牛顿拉夫逊法潮流计算MATLAB程序详解:节点电压与支路功率分析,33节点直流配电网网牛顿拉夫逊法(牛拉法)
资源内容介绍
直流配电网牛顿拉夫逊法潮流计算MATLAB程序详解:节点电压与支路功率有名值计算,直流配电网牛顿拉夫逊法潮流计算MATLAB程序详解:节点电压与支路功率分析,33节点直流配电网网牛顿拉夫逊法(牛拉法)潮流计算MATLAB程序,采用有名值计算,最后可以得出各节点电压和各支路功率。注意是直流配电网,交流网络改改也能使用,原理是一样的,程序简单易读,注释详尽,容易理解,适合新手。运行结果如下图所示。,核心关键词:33节点直流配电网;牛顿拉夫逊法(牛拉法);潮流计算;MATLAB程序;有名值计算;节点电压;支路功率;程序简单易读;注释详尽;适合新手;运行结果。,直流配电网潮流计算:牛拉法MATLAB程序详解,简单易懂适合新手 <link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/css/base.min.css" rel="stylesheet"/><link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/css/fancy.min.css" rel="stylesheet"/><link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/90427927/2/raw.css" rel="stylesheet"/><div id="sidebar" style="display: none"><div id="outline"></div></div><div class="pf w0 h0" data-page-no="1" id="pf1"><div class="pc pc1 w0 h0"><img alt="" class="bi x0 y0 w1 h1" src="/image.php?url=https://csdnimg.cn/release/download_crawler_static/90427927/bg1.jpg"/><div class="t m0 x1 h2 y1 ff1 fs0 fc0 sc0 ls0 ws0">**<span class="ff2">基于牛顿拉夫逊法(牛拉法)的<span class="_ _0"> </span></span>33<span class="_ _0"> </span><span class="ff2">节点直流配电网潮流计算<span class="_ _0"> </span></span>MATLAB<span class="_ _0"> </span><span class="ff2">程序</span>**</div><div class="t m0 x1 h2 y2 ff2 fs0 fc0 sc0 ls0 ws0">一、引言</div><div class="t m0 x1 h2 y3 ff2 fs0 fc0 sc0 ls0 ws0">本篇文章将详细介绍一种用于<span class="_ _0"> </span><span class="ff1">33<span class="_ _0"> </span></span>节点直流配电网潮流计算的<span class="_ _0"> </span><span class="ff1">MATLAB<span class="_ _0"> </span></span>程序,<span class="_ _1"></span>采用牛顿拉夫</div><div class="t m0 x1 h2 y4 ff2 fs0 fc0 sc0 ls0 ws0">逊法<span class="_ _2"></span>(简称牛拉法)<span class="_ _2"></span>进行计算。<span class="_ _2"></span>程序采用有名值计算,<span class="_ _2"></span>最终可得出各节点的电压和各支路的</div><div class="t m0 x1 h2 y5 ff2 fs0 fc0 sc0 ls0 ws0">功率。<span class="_ _3"></span>虽然此程序针对的是直流配电网,<span class="_ _3"></span>但原理与交流网络相似,<span class="_ _3"></span>稍作修改即可应用于交流</div><div class="t m0 x1 h2 y6 ff2 fs0 fc0 sc0 ls0 ws0">网络。</div><div class="t m0 x1 h2 y7 ff2 fs0 fc0 sc0 ls0 ws0">二、牛顿拉夫逊法(牛拉法)简介</div><div class="t m0 x1 h2 y8 ff2 fs0 fc0 sc0 ls0 ws0">牛顿拉夫逊法是一种用于解决非线性方程组的迭代算法。<span class="_ _4"></span>在电力系统中,<span class="_ _4"></span>它被广泛应用于潮</div><div class="t m0 x1 h2 y9 ff2 fs0 fc0 sc0 ls0 ws0">流计算。该方法通过建立雅可比矩阵并迭代求解,直至达到收敛条件。</div><div class="t m0 x1 h2 ya ff2 fs0 fc0 sc0 ls0 ws0">三、程序实现</div><div class="t m0 x1 h2 yb ff1 fs0 fc0 sc0 ls0 ws0">1. <span class="_ _5"> </span><span class="ff2">定义网络参数</span></div><div class="t m0 x1 h2 yc ff2 fs0 fc0 sc0 ls0 ws0">首先,我们需要定义<span class="_ _0"> </span><span class="ff1">33<span class="_ _5"> </span></span>节点直流配电网的网络参数,包括节点间的电阻、电导等。这些参</div><div class="t m0 x1 h2 yd ff2 fs0 fc0 sc0 ls0 ws0">数以有名值的形式存储在<span class="_ _0"> </span><span class="ff1">MATLAB<span class="_ _0"> </span></span>中。</div><div class="t m0 x1 h2 ye ff1 fs0 fc0 sc0 ls0 ws0">2. <span class="_ _5"> </span><span class="ff2">建立雅可比矩阵</span></div><div class="t m0 x1 h2 yf ff2 fs0 fc0 sc0 ls0 ws0">根据网络参数和节点的电压初值,<span class="_ _4"></span>建立雅可比矩阵。<span class="_ _4"></span>雅可比矩阵中的元素包括节点电压的实</div><div class="t m0 x1 h2 y10 ff2 fs0 fc0 sc0 ls0 ws0">部和虚部、支路电流等。</div><div class="t m0 x1 h2 y11 ff1 fs0 fc0 sc0 ls0 ws0">3. <span class="_ _5"> </span><span class="ff2">迭代计算</span></div><div class="t m0 x1 h2 y12 ff2 fs0 fc0 sc0 ls0 ws0">使用牛拉法进行迭代计算,<span class="_ _3"></span>不断更新节点的电压和支路的功率。<span class="_ _3"></span>每次迭代后,<span class="_ _3"></span>都会更新雅可</div><div class="t m0 x1 h2 y13 ff2 fs0 fc0 sc0 ls0 ws0">比矩阵的元素。</div><div class="t m0 x1 h2 y14 ff1 fs0 fc0 sc0 ls0 ws0">4. <span class="_ _5"> </span><span class="ff2">输出结果</span></div><div class="t m0 x1 h2 y15 ff2 fs0 fc0 sc0 ls0 ws0">最终,<span class="_ _3"></span>程序将输出各节点的电压和各支路的功率。<span class="_ _3"></span>这些结果将以有名值的形式展示,<span class="_ _3"></span>便于理</div><div class="t m0 x1 h2 y16 ff2 fs0 fc0 sc0 ls0 ws0">解和分析。</div><div class="t m0 x1 h2 y17 ff2 fs0 fc0 sc0 ls0 ws0">四、<span class="ff1">MATLAB<span class="_ _0"> </span></span>程序实现(部分代码)</div><div class="t m0 x1 h2 y18 ff2 fs0 fc0 sc0 ls0 ws0">以下是<span class="_ _6"></span>一个简<span class="_ _6"></span>单的<span class="_ _0"> </span><span class="ff1">MATLAB<span class="_"> </span></span>程序<span class="_ _6"></span>示例,<span class="_ _6"></span>用于实<span class="_ _6"></span>现牛拉<span class="_ _6"></span>法潮流<span class="_ _6"></span>计算。<span class="_ _6"></span>请注意<span class="_ _6"></span>,这只<span class="_ _6"></span>是一个<span class="_ _6"></span>示</div><div class="t m0 x1 h2 y19 ff2 fs0 fc0 sc0 ls0 ws0">例程序,实际使用时可能需要根据具体的网络参数进行调整。</div><div class="t m0 x1 h2 y1a ff1 fs0 fc0 sc0 ls0 ws0">```matlab</div><div class="t m0 x1 h2 y1b ff1 fs0 fc0 sc0 ls0 ws0">% <span class="_ _5"> </span><span class="ff2">定义网络参数(此处为示例参数,实际使用时需替换为具体参数)</span></div><div class="t m0 x1 h2 y1c ff1 fs0 fc0 sc0 ls0 ws0">R = [...]; % <span class="_ _5"> </span><span class="ff2">节点间电阻矩阵</span></div><div class="t m0 x1 h2 y1d ff1 fs0 fc0 sc0 ls0 ws0">S = [...]; % <span class="_ _5"> </span><span class="ff2">初始节点电压向量(有名值)</span></div><div class="t m0 x1 h2 y1e ff1 fs0 fc0 sc0 ls0 ws0">...</div><div class="t m0 x1 h2 y1f ff1 fs0 fc0 sc0 ls0 ws0">% <span class="_ _5"> </span><span class="ff2">初始化雅可比矩阵和其他变量</span></div><div class="t m0 x1 h2 y20 ff1 fs0 fc0 sc0 ls0 ws0">J = initialize_jacobian(R, S); % <span class="_ _5"> </span><span class="ff2">初始化雅可比矩阵</span></div></div><div class="pi" data-data='{"ctm":[1.611830,0.000000,0.000000,1.611830,0.000000,0.000000]}'></div></div>