基于混合高斯模型、卡尔曼滤波与聚合通道特征算法的行人跟踪及运动区域检测研究实战指导(包含可运行matlab代码与报告),基于混合高斯模型、卡尔曼滤波与聚合通道特征算法的行人识别跟踪系统实现,数字图像处
资源内容介绍
基于混合高斯模型、卡尔曼滤波与聚合通道特征算法的行人跟踪及运动区域检测研究实战指导(包含可运行matlab代码与报告),基于混合高斯模型、卡尔曼滤波与聚合通道特征算法的行人识别跟踪系统实现,数字图像处理 运动监测行人识别 行人跟踪混合高斯模型+卡尔曼滤波+聚合通道特征算法实现运动区域检测跟踪和行人识别跟踪包含可运行matlab代码+报告+ppt,演示视频不提供,替成自己的视频后改变代码内路径即可,数字图像处理; 运动监测; 行人识别; 行人跟踪; 混合高斯模型; 卡尔曼滤波; 聚合通道特征算法; MATLAB代码; 报告; PPT。,基于混合高斯模型与卡尔曼滤波的行人检测跟踪系统实现报告 <link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/css/base.min.css" rel="stylesheet"/><link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/css/fancy.min.css" rel="stylesheet"/><link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/90428717/2/raw.css" rel="stylesheet"/><div id="sidebar" style="display: none"><div id="outline"></div></div><div class="pf w0 h0" data-page-no="1" id="pf1"><div class="pc pc1 w0 h0"><img alt="" class="bi x0 y0 w1 h1" src="/image.php?url=https://csdnimg.cn/release/download_crawler_static/90428717/bg1.jpg"/><div class="t m0 x1 h2 y1 ff1 fs0 fc0 sc0 ls0 ws0">---</div><div class="t m0 x1 h2 y2 ff2 fs0 fc0 sc0 ls0 ws0">标题<span class="_ _0"></span>:<span class="_ _0"></span>深度探索运动监测与行人识别跟踪<span class="ff1">——</span>混合高斯模型、卡尔曼滤波与聚合通道特征算</div><div class="t m0 x1 h2 y3 ff2 fs0 fc0 sc0 ls0 ws0">法</div><div class="t m0 x1 h2 y4 ff2 fs0 fc0 sc0 ls0 ws0">摘要<span class="_ _0"></span>:<span class="_ _0"></span>本文将介绍如何使用混合高斯模型、卡尔曼滤波和聚合通道特征算法来实现运动区域</div><div class="t m0 x1 h2 y5 ff2 fs0 fc0 sc0 ls0 ws0">检测跟<span class="_ _1"></span>踪和行<span class="_ _1"></span>人识别<span class="_ _1"></span>的技术<span class="_ _1"></span>。我们<span class="_ _1"></span>将通过<span class="_ _1"></span>理论分<span class="_ _1"></span>析和<span class="_ _2"> </span><span class="ff1">MATLAB<span class="_"> </span></span>代码实例<span class="_ _1"></span>来展示<span class="_ _1"></span>这一过<span class="_ _1"></span>程的</div><div class="t m0 x1 h2 y6 ff2 fs0 fc0 sc0 ls0 ws0">实现细节,并尝试以随笔的方式展现技术探索的乐趣和挑战。</div><div class="t m0 x1 h2 y7 ff2 fs0 fc0 sc0 ls0 ws0">一、步入数字图像处理的世界</div><div class="t m0 x1 h2 y8 ff2 fs0 fc0 sc0 ls0 ws0">在数字化的世界里,<span class="_ _0"></span>数字图像处理是一种重要的技术手段。<span class="_ _0"></span>从早期的简单图像处理到如今复</div><div class="t m0 x1 h2 y9 ff2 fs0 fc0 sc0 ls0 ws0">杂的计算机视觉,每一次技术革新都为我们带来了更深入的认知和无限的可能性。</div><div class="t m0 x1 h2 ya ff2 fs0 fc0 sc0 ls0 ws0">二、混合高斯模型的魅力</div><div class="t m0 x1 h2 yb ff2 fs0 fc0 sc0 ls0 ws0">混合高<span class="_ _1"></span>斯模型<span class="_ _1"></span>(<span class="ff1">Gaussian Mixture <span class="_ _1"></span>Model, GMM</span>)是<span class="_ _1"></span>一种强<span class="_ _1"></span>大的统<span class="_ _1"></span>计工具<span class="_ _1"></span>,用于描<span class="_ _1"></span>述和模<span class="_ _1"></span>拟</div><div class="t m0 x1 h2 yc ff2 fs0 fc0 sc0 ls0 ws0">复杂分布的数据。<span class="_ _3"></span>在运动检测中,<span class="_ _3"></span>我们可以利用<span class="_ _2"> </span><span class="ff1">GMM<span class="_ _4"> </span></span>来建模背景,<span class="_ _3"></span>从而有效地分离出运动</div><div class="t m0 x1 h2 yd ff2 fs0 fc0 sc0 ls0 ws0">区域。</div><div class="t m0 x1 h2 ye ff2 fs0 fc0 sc0 ls0 ws0">示例代码(伪代码)<span class="_ _5"></span>:</div><div class="t m0 x1 h2 yf ff1 fs0 fc0 sc0 ls0 ws0">```matlab</div><div class="t m0 x1 h2 y10 ff1 fs0 fc0 sc0 ls0 ws0">% <span class="_ _4"> </span><span class="ff2">初始化<span class="_ _4"> </span></span>GMM<span class="_"> </span><span class="ff2">参数</span>...</div><div class="t m0 x1 h2 y11 ff1 fs0 fc0 sc0 ls0 ws0">while <span class="_ _4"> </span><span class="ff2">循环检测视频帧</span> <span class="_ _4"> </span>{</div><div class="t m0 x1 h2 y12 ff1 fs0 fc0 sc0 ls0 ws0"> <span class="_ _6"> </span>% <span class="_ _4"> </span><span class="ff2">使用<span class="_ _4"> </span></span>GMM<span class="_"> </span><span class="ff2">更新背景模型</span>...</div><div class="t m0 x1 h2 y13 ff1 fs0 fc0 sc0 ls0 ws0"> <span class="_ _6"> </span>% <span class="_ _4"> </span><span class="ff2">检测运动区域</span>...</div><div class="t m0 x1 h2 y14 ff1 fs0 fc0 sc0 ls0 ws0">}</div><div class="t m0 x1 h2 y15 ff1 fs0 fc0 sc0 ls0 ws0">```</div><div class="t m0 x1 h2 y16 ff2 fs0 fc0 sc0 ls0 ws0">三、卡尔曼滤波的踪影</div><div class="t m0 x1 h2 y17 ff2 fs0 fc0 sc0 ls0 ws0">卡尔曼滤波(<span class="ff1">Kalman Filter</span>)是一种高效的递归滤波器,它能够从一系列的不完全且包含噪</div><div class="t m0 x1 h2 y18 ff2 fs0 fc0 sc0 ls0 ws0">声的测量中,<span class="_ _7"></span>估计动态系统的状态。<span class="_ _7"></span>在行人跟踪中,<span class="_ _7"></span>卡尔曼滤波可以帮助我们准确预测行人</div><div class="t m0 x1 h2 y19 ff2 fs0 fc0 sc0 ls0 ws0">的位置,实现稳定的跟踪。</div><div class="t m0 x1 h2 y1a ff2 fs0 fc0 sc0 ls0 ws0">示例代码(片段)<span class="_ _5"></span>:</div><div class="t m0 x1 h2 y1b ff1 fs0 fc0 sc0 ls0 ws0">```matlab</div><div class="t m0 x1 h2 y1c ff1 fs0 fc0 sc0 ls0 ws0">% <span class="_ _4"> </span><span class="ff2">初始化卡尔曼滤波器</span>...</div><div class="t m0 x1 h2 y1d ff1 fs0 fc0 sc0 ls0 ws0">for <span class="_ _4"> </span><span class="ff2">每一帧</span> <span class="_ _4"> </span>{</div><div class="t m0 x1 h2 y1e ff1 fs0 fc0 sc0 ls0 ws0"> <span class="_ _6"> </span>% <span class="_ _4"> </span><span class="ff2">更新测量值</span>...</div><div class="t m0 x1 h2 y1f ff1 fs0 fc0 sc0 ls0 ws0"> <span class="_ _6"> </span>% <span class="_ _4"> </span><span class="ff2">使用卡尔曼滤波预测行人位置</span>...</div><div class="t m0 x1 h2 y20 ff1 fs0 fc0 sc0 ls0 ws0">}</div><div class="t m0 x1 h2 y21 ff1 fs0 fc0 sc0 ls0 ws0">```</div></div><div class="pi" data-data='{"ctm":[1.611830,0.000000,0.000000,1.611830,0.000000,0.000000]}'></div></div>