基于LQR算法的自动驾驶车道保持LKA系统详解:Carsim与Simulink联合仿真手册及推导指南,基于LQR算法的自动驾驶车道保持LKA的Carsim与Simulink联合仿真指南及详细推导过程
资源内容介绍
基于LQR算法的自动驾驶车道保持LKA系统详解:Carsim与Simulink联合仿真手册及推导指南,基于LQR算法的自动驾驶车道保持LKA的Carsim与Simulink联合仿真指南及详细推导过程,自动驾驶车道保持LKA,基于LQR算法,carsim与simulink联合仿真,包括说明书及LQR的推导过程(每一步怎么做的),自动驾驶车道保持LKA; 基于LQR算法; carsim与simulink联合仿真; 说明书; LQR的推导过程。,LQR算法在自动驾驶车道保持LKA系统中的应用:carsim与simulink联合仿真及LQR推导过程说明书 <link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/css/base.min.css" rel="stylesheet"/><link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/css/fancy.min.css" rel="stylesheet"/><link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/90427222/2/raw.css" rel="stylesheet"/><div id="sidebar" style="display: none"><div id="outline"></div></div><div class="pf w0 h0" data-page-no="1" id="pf1"><div class="pc pc1 w0 h0"><img alt="" class="bi x0 y0 w1 h1" src="/image.php?url=https://csdnimg.cn/release/download_crawler_static/90427222/bg1.jpg"/><div class="t m0 x1 h2 y1 ff1 fs0 fc0 sc0 ls0 ws0">**<span class="ff2">探索<span class="_ _0"> </span></span>LKA<span class="_"> </span><span class="ff2">技术:自动驾驶车道保持的<span class="_"> </span></span>LQR<span class="_"> </span><span class="ff2">算法与<span class="_"> </span></span>CarSim<span class="_"> </span><span class="ff2">与<span class="_"> </span></span>Simulink<span class="_"> </span><span class="ff2">联合仿真之旅</span>**</div><div class="t m0 x1 h2 y2 ff2 fs0 fc0 sc0 ls0 ws0">在<span class="_ _1"></span>科<span class="_ _1"></span>技<span class="_ _1"></span>日<span class="_ _1"></span>新<span class="_ _1"></span>月<span class="_ _1"></span>异<span class="_ _1"></span>的<span class="_ _1"></span>今<span class="_ _1"></span>天<span class="_ _1"></span>,<span class="_ _1"></span>自<span class="_ _1"></span>动<span class="_ _1"></span>驾<span class="_ _1"></span>驶<span class="_ _1"></span>技<span class="_ _1"></span>术<span class="_ _1"></span>已<span class="_ _1"></span>成<span class="_ _1"></span>为<span class="_ _1"></span>汽<span class="_ _1"></span>车<span class="_ _1"></span>行<span class="_ _1"></span>业<span class="_ _1"></span>的<span class="_ _1"></span>研<span class="_ _1"></span>究<span class="_ _1"></span>热<span class="_ _1"></span>点<span class="_ _1"></span>。<span class="_ _1"></span>其<span class="_ _1"></span>中<span class="_ _1"></span>,<span class="_ _1"></span>车<span class="_ _1"></span>道<span class="_ _1"></span>保<span class="_ _1"></span>持</div><div class="t m0 x1 h2 y3 ff2 fs0 fc0 sc0 ls0 ws0">(<span class="ff1">LKA</span>)<span class="_ _2"></span>作为自动驾驶系统的重要一环,<span class="_ _2"></span>能够为车辆在行驶过程中提供更稳定、<span class="_ _2"></span>安全的行驶</div><div class="t m0 x1 h2 y4 ff2 fs0 fc0 sc0 ls0 ws0">保障。<span class="_ _3"></span>本文将<span class="_ _3"></span>深入探<span class="_ _3"></span>讨<span class="_ _0"> </span><span class="ff1">LKA<span class="_"> </span></span>技术的<span class="_ _3"></span>核心算<span class="_ _3"></span>法<span class="ff1">——</span>基于<span class="_ _4"> </span><span class="ff1">LQR</span>(线<span class="_ _3"></span>性二次<span class="_ _3"></span>型调节<span class="_ _3"></span>器)算<span class="_ _3"></span>法的控</div><div class="t m0 x1 h2 y5 ff2 fs0 fc0 sc0 ls0 ws0">制系统,以及使用<span class="_ _0"> </span><span class="ff1">CarSim<span class="_ _0"> </span></span>与<span class="_ _0"> </span><span class="ff1">Simulink<span class="_ _0"> </span></span>进行联合仿真的实践过程。</div><div class="t m0 x1 h2 y6 ff1 fs0 fc0 sc0 ls0 ws0">**<span class="ff2">一、</span>LKA<span class="_"> </span><span class="ff2">技术的引入</span>**</div><div class="t m0 x1 h2 y7 ff2 fs0 fc0 sc0 ls0 ws0">随着科技的进步,<span class="_ _5"></span>现代车辆越来越追求智能、<span class="_ _5"></span>安全的驾驶体验。<span class="_ _5"></span><span class="ff1">LKA<span class="_ _0"> </span><span class="ff2">系统是现代汽车不可或</span></span></div><div class="t m0 x1 h2 y8 ff2 fs0 fc0 sc0 ls0 ws0">缺的一部分,<span class="_ _6"></span>其功能是在行驶过程中通过图像识别技术获取道路标线信息,<span class="_ _6"></span>对车辆偏离车道</div><div class="t m0 x1 h2 y9 ff2 fs0 fc0 sc0 ls0 ws0">的动作进<span class="_ _3"></span>行主动修<span class="_ _3"></span>正,提高行<span class="_ _3"></span>驶安全。<span class="_ _3"></span>而其中<span class="_ _0"> </span><span class="ff1">LQR<span class="_"> </span></span>算法作为<span class="_ _3"></span>控制系统的<span class="_ _3"></span>核心,其<span class="_ _3"></span>作用不容</div><div class="t m0 x1 h2 ya ff2 fs0 fc0 sc0 ls0 ws0">小觑。</div><div class="t m0 x1 h2 yb ff1 fs0 fc0 sc0 ls0 ws0">**<span class="ff2">二、</span>LQR<span class="_"> </span><span class="ff2">算法的解析</span>**</div><div class="t m0 x1 h2 yc ff1 fs0 fc0 sc0 ls0 ws0">LQR<span class="_ _0"> </span><span class="ff2">算法是一种优化控制算法,<span class="_ _7"></span>其核心思想是通过设计一个线性状态反馈控制器,<span class="_ _7"></span>使得系统</span></div><div class="t m0 x1 h2 yd ff2 fs0 fc0 sc0 ls0 ws0">在一定<span class="_ _3"></span>的约束<span class="_ _3"></span>条件<span class="_ _3"></span>下达到<span class="_ _3"></span>最优性<span class="_ _3"></span>能。在<span class="_ _4"> </span><span class="ff1">LKA<span class="_"> </span></span>系统中,<span class="_ _3"></span>我们主<span class="_ _3"></span>要考虑<span class="_ _3"></span>的是<span class="_ _3"></span>车辆在<span class="_ _3"></span>不同车<span class="_ _3"></span>速、</div><div class="t m0 x1 h2 ye ff2 fs0 fc0 sc0 ls0 ws0">不同路况下的稳定性和跟踪能力。<span class="_ _8"></span>因此,<span class="_ _8"></span>需要构建一个以车辆位置、<span class="_ _8"></span>速度和姿态等状态为输</div><div class="t m0 x1 h2 yf ff2 fs0 fc0 sc0 ls0 ws0">入的<span class="_ _0"> </span><span class="ff1">LQR<span class="_ _0"> </span></span>系统模型。通过精确的模型设计,能够为后续的仿真和测试提供有力支撑。</div><div class="t m0 x1 h2 y10 ff2 fs0 fc0 sc0 ls0 ws0">具体到算法的推导过程:</div><div class="t m0 x1 h2 y11 ff1 fs0 fc0 sc0 ls0 ws0">1. <span class="_ _0"> </span><span class="ff2">确定系统的状<span class="_ _3"></span>态方程。<span class="_ _3"></span>通过建立<span class="_ _3"></span>车辆动<span class="_ _3"></span>力学模型<span class="_ _3"></span>,将车辆<span class="_ _3"></span>的运动状<span class="_ _3"></span>态(如位<span class="_ _3"></span>置、速度<span class="_ _3"></span>等)</span></div><div class="t m0 x1 h2 y12 ff2 fs0 fc0 sc0 ls0 ws0">以及控制输入(如转向角度等)用数学方程表示出来。</div><div class="t m0 x1 h2 y13 ff1 fs0 fc0 sc0 ls0 ws0">2. <span class="_ _0"> </span><span class="ff2">设计性能指<span class="_ _3"></span>标函数。<span class="_ _3"></span>该函数反<span class="_ _3"></span>映了系统<span class="_ _3"></span>在控制过<span class="_ _3"></span>程中的性<span class="_ _3"></span>能要求,<span class="_ _3"></span>如系统的<span class="_ _3"></span>稳定性<span class="_ _3"></span>、响</span></div><div class="t m0 x1 h2 y14 ff2 fs0 fc0 sc0 ls0 ws0">应速度等。通过设定合适的权重系数,使得性能指标函数能够满足我们的控制需求。</div><div class="t m0 x1 h2 y15 ff1 fs0 fc0 sc0 ls0 ws0">3. <span class="_ _9"> </span><span class="ff2">求解<span class="_ _0"> </span></span>Riccati<span class="_ _9"> </span><span class="ff2">方程。<span class="_ _2"></span>根据状态方程和性能指标函数,<span class="_ _a"></span>构建出<span class="_ _0"> </span><span class="ff1">Riccati<span class="_ _9"> </span></span>方程,<span class="_ _2"></span>并求解出最优反</span></div><div class="t m0 x1 h2 y16 ff2 fs0 fc0 sc0 ls0 ws0">馈增益矩阵<span class="_ _0"> </span><span class="ff1">K</span>。</div><div class="t m0 x1 h2 y17 ff1 fs0 fc0 sc0 ls0 ws0">4. <span class="_ _9"> </span><span class="ff2">构建反馈控制器。<span class="_ _8"></span>根据反馈增益矩阵<span class="_"> </span><span class="ff1">K</span>,<span class="_ _8"></span>设计出线性状态反馈控制器,<span class="_ _b"></span>将控制信号传递给</span></div><div class="t m0 x1 h2 y18 ff2 fs0 fc0 sc0 ls0 ws0">执行机构(如车辆的转向系统等)<span class="_ _c"></span>,实现车道的自动保持功能。</div><div class="t m0 x1 h2 y19 ff1 fs0 fc0 sc0 ls0 ws0">**<span class="ff2">三、</span>CarSim<span class="_ _0"> </span><span class="ff2">与<span class="_ _0"> </span></span>Simulink<span class="_ _0"> </span><span class="ff2">联合仿真实践</span>**</div><div class="t m0 x1 h2 y1a ff2 fs0 fc0 sc0 ls0 ws0">在掌握了<span class="_ _4"> </span><span class="ff1">LQR<span class="_"> </span></span>算法的原理后<span class="_ _3"></span>,我们还需<span class="_ _3"></span>要通过仿<span class="_ _3"></span>真来验证算<span class="_ _3"></span>法的可行性<span class="_ _3"></span>和有效性<span class="_ _3"></span>。这里我</div><div class="t m0 x1 h2 y1b ff2 fs0 fc0 sc0 ls0 ws0">们选择了<span class="_ _0"> </span><span class="ff1">CarSim<span class="_ _0"> </span></span>与<span class="_ _0"> </span><span class="ff1">Simulink<span class="_ _0"> </span></span>进行联合仿真。</div><div class="t m0 x1 h2 y1c ff2 fs0 fc0 sc0 ls0 ws0">首先,在<span class="_ _0"> </span><span class="ff1">CarSim<span class="_"> </span></span>中建立车辆动力学模型和环境模型,包括车辆的物理参数、轮胎特性、道</div><div class="t m0 x1 h2 y1d ff2 fs0 fc0 sc0 ls0 ws0">路条件等。<span class="_ _5"></span>然后,<span class="_ _a"></span>将<span class="_"> </span><span class="ff1">LQR<span class="_"> </span></span>算法模型导入到<span class="_ _9"> </span><span class="ff1">Simulink<span class="_"> </span></span>中,<span class="_ _5"></span>与<span class="_ _0"> </span><span class="ff1">CarSim<span class="_"> </span></span>模型进行连接。<span class="_ _5"></span>通过设定</div><div class="t m0 x1 h2 y1e ff2 fs0 fc0 sc0 ls0 ws0">不同的仿真场景<span class="_ _2"></span>(如不同车速、不同路况等)<span class="_ _c"></span>,<span class="_ _2"></span>对<span class="_"> </span><span class="ff1">LKA<span class="_"> </span></span>系统的性能进行测试和评估。<span class="_ _2"></span>在仿真</div><div class="t m0 x1 h2 y1f ff2 fs0 fc0 sc0 ls0 ws0">过程中,<span class="_ _3"></span>可以实时<span class="_ _3"></span>观察车辆的<span class="_ _3"></span>行驶轨迹<span class="_ _3"></span>、速度等参<span class="_ _3"></span>数的变化情<span class="_ _3"></span>况,以及<span class="_ _4"> </span><span class="ff1">LQR<span class="_"> </span></span>控制器的输出</div><div class="t m0 x1 h2 y20 ff2 fs0 fc0 sc0 ls0 ws0">情况,从而对算法进行优化和调整。</div><div class="t m0 x1 h2 y21 ff1 fs0 fc0 sc0 ls0 ws0">**<span class="ff2">四、总结与展望</span>**</div></div><div class="pi" data-data='{"ctm":[1.611830,0.000000,0.000000,1.611830,0.000000,0.000000]}'></div></div>