多输入单输出拟合预测模型建立与基于AOA优化的XGboost算法应用图解:高效注释详解,实用易上手,算数优化算法AOA提升XGboost预测模型效率:多输入单输出拟合预测模型,详细注释,易学习,直接应
资源内容介绍
多输入单输出拟合预测模型建立与基于AOA优化的XGboost算法应用图解:高效注释详解,实用易上手,算数优化算法AOA提升XGboost预测模型效率:多输入单输出拟合预测模型,详细注释,易学习,直接应用。,算数优化算法AOA优化XGboost预测模型,建立多输入单输出的拟合预测模型,程序内注释详细,直接替数据就可以用,可学习性强,具体如下图所示,想要的加好友我吧。,关键词:算数优化算法;AOA优化;XGboost预测模型;多输入单输出拟合预测模型;程序内注释详细;数据直接替换可用;学习性强。,基于AOA优化算法的XGboost预测模型:多输入单输出拟合预测及注释详尽程序指南 <link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/css/base.min.css" rel="stylesheet"/><link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/css/fancy.min.css" rel="stylesheet"/><link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/90426818/2/raw.css" rel="stylesheet"/><div id="sidebar" style="display: none"><div id="outline"></div></div><div class="pf w0 h0" data-page-no="1" id="pf1"><div class="pc pc1 w0 h0"><img alt="" class="bi x0 y0 w1 h1" src="/image.php?url=https://csdnimg.cn/release/download_crawler_static/90426818/bg1.jpg"/><div class="t m0 x1 h2 y1 ff1 fs0 fc0 sc0 ls0 ws0">探索算数优化算法<span class="_ _0"> </span><span class="ff2">AOA<span class="_"> </span></span>与<span class="_ _0"> </span><span class="ff2">XGb<span class="_ _1"></span>oost<span class="_"> </span><span class="ff1">的预测魅力</span></span></div><div class="t m0 x1 h2 y2 ff1 fs0 fc0 sc0 ls0 ws0">在数据科学和机器学习的领域里,<span class="_ _2"></span>算法是解决复杂问题的关键。<span class="_ _2"></span>今天,<span class="_ _2"></span>我们将一起探索一种</div><div class="t m0 x1 h2 y3 ff1 fs0 fc0 sc0 ls0 ws0">名为算<span class="_ _3"></span>数优化<span class="_ _3"></span>算法(<span class="_ _3"></span><span class="ff2">AOA</span>)的<span class="_ _3"></span>优化技<span class="_ _3"></span>术和<span class="_ _0"> </span><span class="ff2">XGboost<span class="_"> </span></span>预测模<span class="_ _3"></span>型。这<span class="_ _3"></span>两种技<span class="_ _3"></span>术各自<span class="_ _3"></span>独特,<span class="_ _3"></span>但当</div><div class="t m0 x1 h2 y4 ff1 fs0 fc0 sc0 ls0 ws0">它们结合在一起时,可以产生强大的预测能力。</div><div class="t m0 x1 h2 y5 ff1 fs0 fc0 sc0 ls0 ws0">一、算法初探:<span class="ff2">AOA<span class="_"> </span></span>优化与<span class="_ _0"> </span><span class="ff2">XGb<span class="_ _1"></span>oost<span class="_"> </span><span class="ff1">预测</span></span></div><div class="t m0 x1 h2 y6 ff2 fs0 fc0 sc0 ls0 ws0">AOA<span class="_"> </span><span class="ff1">优化算法是一种新兴的优化技术,它通过算数操<span class="_ _3"></span>作来寻找最优解。而<span class="_ _0"> </span></span>XGboost<span class="_"> </span><span class="ff1">则是一</span></div><div class="t m0 x1 h2 y7 ff1 fs0 fc0 sc0 ls0 ws0">种强大的机器学习算法,用于建立多输入单输出的拟合预测模型。</div><div class="t m0 x1 h2 y8 ff1 fs0 fc0 sc0 ls0 ws0">我们将使用<span class="_ _0"> </span><span class="ff2">Python<span class="_"> </span></span>语言,配合其丰富的机器学习库,来实现这两个技术的结合。下面是代</div><div class="t m0 x1 h2 y9 ff1 fs0 fc0 sc0 ls0 ws0">码示例,程序中注释详细,你可以直接替换数据来使用,增强可学习性。</div><div class="t m0 x1 h2 ya ff2 fs0 fc0 sc0 ls0 ws0">```python</div><div class="t m0 x1 h2 yb ff2 fs0 fc0 sc0 ls0 ws0"># <span class="_ _4"> </span><span class="ff1">导入所需的库</span></div><div class="t m0 x1 h2 yc ff2 fs0 fc0 sc0 ls0 ws0">import numpy as np</div><div class="t m0 x1 h2 yd ff2 fs0 fc0 sc0 ls0 ws0">import pandas as pd</div><div class="t m0 x1 h2 ye ff2 fs0 fc0 sc0 ls0 ws0">from sklearn.model_selection import train_test_split</div><div class="t m0 x1 h2 yf ff2 fs0 fc0 sc0 ls0 ws0">from xgboost import XGBRegressor</div><div class="t m0 x1 h2 y10 ff2 fs0 fc0 sc0 ls0 ws0">from aoa_optimization import AOA <span class="_ _5"> </span># <span class="_ _4"> </span><span class="ff1">假设我们有一个<span class="_ _0"> </span></span>AOA<span class="_"> </span><span class="ff1">优化的<span class="_ _4"> </span></span>Python<span class="_"> </span><span class="ff1">库</span></div><div class="t m0 x1 h2 y11 ff2 fs0 fc0 sc0 ls0 ws0"># <span class="_ _4"> </span><span class="ff1">加载数据(这里假设你已经有了一个<span class="_ _0"> </span></span>CSV<span class="_"> </span><span class="ff1">格式的数据集)</span></div><div class="t m0 x1 h2 y12 ff2 fs0 fc0 sc0 ls0 ws0">data = pd.read_csv('your_dataset.csv')</div><div class="t m0 x1 h2 y13 ff2 fs0 fc0 sc0 ls0 ws0"># <span class="_ _4"> </span><span class="ff1">预处理数据,分割特征和标签等(这一步根据实际情况来)</span></div><div class="t m0 x1 h2 y14 ff2 fs0 fc0 sc0 ls0 ws0">X = data.drop('target_column', axis=1) <span class="_ _5"> </span># 'target_column'<span class="ff1">是你的预测目标列</span></div><div class="t m0 x1 h2 y15 ff2 fs0 fc0 sc0 ls0 ws0">y = data['target_column']</div><div class="t m0 x1 h2 y16 ff2 fs0 fc0 sc0 ls0 ws0"># <span class="_ _4"> </span><span class="ff1">使用<span class="_ _0"> </span></span>AOA<span class="_"> </span><span class="ff1">优化参数</span></div><div class="t m0 x1 h2 y17 ff2 fs0 fc0 sc0 ls0 ws0">aoa_params = {</div><div class="t m0 x1 h2 y18 ff2 fs0 fc0 sc0 ls0 ws0"> <span class="_ _6"> </span>'learning_rate': AOA.optimize(X, y, 'learning_rate'), <span class="_ _5"> </span># AOA<span class="_ _4"> </span><span class="ff1">优化学习率</span></div><div class="t m0 x1 h2 y19 ff2 fs0 fc0 sc0 ls0 ws0"> <span class="_ _6"> </span># ... <span class="_ _4"> </span><span class="ff1">其他参数可通过<span class="_ _0"> </span></span>AOA<span class="_"> </span><span class="ff1">进行优化</span> <span class="_ _4"> </span>...</div><div class="t m0 x1 h2 y1a ff2 fs0 fc0 sc0 ls0 ws0">}</div><div class="t m0 x1 h2 y1b ff2 fs0 fc0 sc0 ls0 ws0"># <span class="_ _4"> </span><span class="ff1">建立<span class="_ _0"> </span></span>XGboost<span class="_ _0"> </span><span class="ff1">模型并训练</span></div><div class="t m0 x1 h2 y1c ff2 fs0 fc0 sc0 ls0 ws0">xgb_model <span class="_ _7"> </span>= <span class="_ _7"> </span>XGBRegressor(**aoa_params) <span class="_ _8"> </span> <span class="_ _8"> </span># <span class="_ _8"> </span><span class="ff1">使<span class="_ _7"> </span>用<span class="_ _9"> </span></span>AOA<span class="_ _9"> </span><span class="ff1">优<span class="_ _7"> </span>化<span class="_ _7"> </span>后<span class="_ _7"> </span>的<span class="_ _7"> </span>参<span class="_ _7"> </span>数<span class="_ _7"> </span>初<span class="_ _7"> </span>始<span class="_ _7"> </span>化</span></div><div class="t m0 x1 h2 y1d ff2 fs0 fc0 sc0 ls0 ws0">XGBRegressor</div><div class="t m0 x1 h2 y1e ff2 fs0 fc0 sc0 ls0 ws0">X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2) <span class="_ _5"> </span># <span class="_ _4"> </span><span class="ff1">数据分割</span></div><div class="t m0 x1 h2 y1f ff2 fs0 fc0 sc0 ls0 ws0">xgb_model.fit(X_train, y_train) <span class="_ _5"> </span># <span class="_ _4"> </span><span class="ff1">训练模型</span></div><div class="t m0 x1 h2 y20 ff2 fs0 fc0 sc0 ls0 ws0">```</div><div class="t m0 x1 h2 y21 ff1 fs0 fc0 sc0 ls0 ws0">二、细节探索:提升模型的可学习性</div></div><div class="pi" data-data='{"ctm":[1.611830,0.000000,0.000000,1.611830,0.000000,0.000000]}'></div></div>