多输入单输出拟合预测模型建立与基于AOA优化的XGboost算法应用图解:高效注释详解,实用易上手,算数优化算法AOA提升XGboost预测模型效率:多输入单输出拟合预测模型,详细注释,易学习,直接应

SIrZrpeGHauwZIP算数优化算法优化预测模型建立多输入单输出的拟合预  3.21MB

资源文件列表:

ZIP 算数优化算法优化预测模型建立多输入单输出的拟合预 大约有15个文件
  1. 1.jpg 156.79KB
  2. 2.jpg 175.41KB
  3. 3.jpg 127.64KB
  4. 4.jpg 143.2KB
  5. 5.jpg 81.77KB
  6. 探索算数优化算法与的预测魅力在.docx 50.49KB
  7. 标题算数优化算法在预测模型中的应用摘要.docx 49.6KB
  8. 根据您的要求以下是一篇使用算数优化算法优化预测模.html 944.31KB
  9. 算数优化算法优化预测.html 942.11KB
  10. 算数优化算法优化预测模型应用案.docx 49.66KB
  11. 算数优化算法优化预测模型技术.html 942.55KB
  12. 算数优化算法优化预测模型技术分析随着科技.html 941.98KB
  13. 算数优化算法优化预测模型技术分析随着科技的飞速发.docx 50.49KB
  14. 算数优化算法是一种针对拟合预测模型.docx 13.92KB
  15. 算数优化算法简称是一种常用于解决数学规划问题的优化.docx 15.63KB

资源介绍:

多输入单输出拟合预测模型建立与基于AOA优化的XGboost算法应用图解:高效注释详解,实用易上手,算数优化算法AOA提升XGboost预测模型效率:多输入单输出拟合预测模型,详细注释,易学习,直接应用。,算数优化算法AOA优化XGboost预测模型,建立多输入单输出的拟合预测模型,程序内注释详细,直接替数据就可以用,可学习性强,具体如下图所示,想要的加好友我吧。 ,关键词:算数优化算法;AOA优化;XGboost预测模型;多输入单输出拟合预测模型;程序内注释详细;数据直接替换可用;学习性强。,基于AOA优化算法的XGboost预测模型:多输入单输出拟合预测及注释详尽程序指南

<link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/css/base.min.css" rel="stylesheet"/><link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/css/fancy.min.css" rel="stylesheet"/><link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/90426818/2/raw.css" rel="stylesheet"/><div id="sidebar" style="display: none"><div id="outline"></div></div><div class="pf w0 h0" data-page-no="1" id="pf1"><div class="pc pc1 w0 h0"><img alt="" class="bi x0 y0 w1 h1" src="/image.php?url=https://csdnimg.cn/release/download_crawler_static/90426818/bg1.jpg"/><div class="t m0 x1 h2 y1 ff1 fs0 fc0 sc0 ls0 ws0">探索算数优化算法<span class="_ _0"> </span><span class="ff2">AOA<span class="_"> </span></span>与<span class="_ _0"> </span><span class="ff2">XGb<span class="_ _1"></span>oost<span class="_"> </span><span class="ff1">的预测魅力</span></span></div><div class="t m0 x1 h2 y2 ff1 fs0 fc0 sc0 ls0 ws0">在数据科学和机器学习的领域里,<span class="_ _2"></span>算法是解决复杂问题的关键。<span class="_ _2"></span>今天,<span class="_ _2"></span>我们将一起探索一种</div><div class="t m0 x1 h2 y3 ff1 fs0 fc0 sc0 ls0 ws0">名为算<span class="_ _3"></span>数优化<span class="_ _3"></span>算法(<span class="_ _3"></span><span class="ff2">AOA</span>)的<span class="_ _3"></span>优化技<span class="_ _3"></span>术和<span class="_ _0"> </span><span class="ff2">XGboost<span class="_"> </span></span>预测模<span class="_ _3"></span>型。这<span class="_ _3"></span>两种技<span class="_ _3"></span>术各自<span class="_ _3"></span>独特,<span class="_ _3"></span>但当</div><div class="t m0 x1 h2 y4 ff1 fs0 fc0 sc0 ls0 ws0">它们结合在一起时,可以产生强大的预测能力。</div><div class="t m0 x1 h2 y5 ff1 fs0 fc0 sc0 ls0 ws0">一、算法初探:<span class="ff2">AOA<span class="_"> </span></span>优化与<span class="_ _0"> </span><span class="ff2">XGb<span class="_ _1"></span>oost<span class="_"> </span><span class="ff1">预测</span></span></div><div class="t m0 x1 h2 y6 ff2 fs0 fc0 sc0 ls0 ws0">AOA<span class="_"> </span><span class="ff1">优化算法是一种新兴的优化技术,它通过算数操<span class="_ _3"></span>作来寻找最优解。而<span class="_ _0"> </span></span>XGboost<span class="_"> </span><span class="ff1">则是一</span></div><div class="t m0 x1 h2 y7 ff1 fs0 fc0 sc0 ls0 ws0">种强大的机器学习算法,用于建立多输入单输出的拟合预测模型。</div><div class="t m0 x1 h2 y8 ff1 fs0 fc0 sc0 ls0 ws0">我们将使用<span class="_ _0"> </span><span class="ff2">Python<span class="_"> </span></span>语言,配合其丰富的机器学习库,来实现这两个技术的结合。下面是代</div><div class="t m0 x1 h2 y9 ff1 fs0 fc0 sc0 ls0 ws0">码示例,程序中注释详细,你可以直接替换数据来使用,增强可学习性。</div><div class="t m0 x1 h2 ya ff2 fs0 fc0 sc0 ls0 ws0">```python</div><div class="t m0 x1 h2 yb ff2 fs0 fc0 sc0 ls0 ws0"># <span class="_ _4"> </span><span class="ff1">导入所需的库</span></div><div class="t m0 x1 h2 yc ff2 fs0 fc0 sc0 ls0 ws0">import numpy as np</div><div class="t m0 x1 h2 yd ff2 fs0 fc0 sc0 ls0 ws0">import pandas as pd</div><div class="t m0 x1 h2 ye ff2 fs0 fc0 sc0 ls0 ws0">from sklearn.model_selection import train_test_split</div><div class="t m0 x1 h2 yf ff2 fs0 fc0 sc0 ls0 ws0">from xgboost import XGBRegressor</div><div class="t m0 x1 h2 y10 ff2 fs0 fc0 sc0 ls0 ws0">from aoa_optimization import AOA <span class="_ _5"> </span># <span class="_ _4"> </span><span class="ff1">假设我们有一个<span class="_ _0"> </span></span>AOA<span class="_"> </span><span class="ff1">优化的<span class="_ _4"> </span></span>Python<span class="_"> </span><span class="ff1">库</span></div><div class="t m0 x1 h2 y11 ff2 fs0 fc0 sc0 ls0 ws0"># <span class="_ _4"> </span><span class="ff1">加载数据(这里假设你已经有了一个<span class="_ _0"> </span></span>CSV<span class="_"> </span><span class="ff1">格式的数据集)</span></div><div class="t m0 x1 h2 y12 ff2 fs0 fc0 sc0 ls0 ws0">data = pd.read_csv('your_dataset.csv')</div><div class="t m0 x1 h2 y13 ff2 fs0 fc0 sc0 ls0 ws0"># <span class="_ _4"> </span><span class="ff1">预处理数据,分割特征和标签等(这一步根据实际情况来)</span></div><div class="t m0 x1 h2 y14 ff2 fs0 fc0 sc0 ls0 ws0">X = data.drop('target_column', axis=1) <span class="_ _5"> </span># 'target_column'<span class="ff1">是你的预测目标列</span></div><div class="t m0 x1 h2 y15 ff2 fs0 fc0 sc0 ls0 ws0">y = data['target_column']</div><div class="t m0 x1 h2 y16 ff2 fs0 fc0 sc0 ls0 ws0"># <span class="_ _4"> </span><span class="ff1">使用<span class="_ _0"> </span></span>AOA<span class="_"> </span><span class="ff1">优化参数</span></div><div class="t m0 x1 h2 y17 ff2 fs0 fc0 sc0 ls0 ws0">aoa_params = {</div><div class="t m0 x1 h2 y18 ff2 fs0 fc0 sc0 ls0 ws0"> <span class="_ _6"> </span>'learning_rate': AOA.optimize(X, y, 'learning_rate'), <span class="_ _5"> </span># AOA<span class="_ _4"> </span><span class="ff1">优化学习率</span></div><div class="t m0 x1 h2 y19 ff2 fs0 fc0 sc0 ls0 ws0"> <span class="_ _6"> </span># ... <span class="_ _4"> </span><span class="ff1">其他参数可通过<span class="_ _0"> </span></span>AOA<span class="_"> </span><span class="ff1">进行优化</span> <span class="_ _4"> </span>...</div><div class="t m0 x1 h2 y1a ff2 fs0 fc0 sc0 ls0 ws0">}</div><div class="t m0 x1 h2 y1b ff2 fs0 fc0 sc0 ls0 ws0"># <span class="_ _4"> </span><span class="ff1">建立<span class="_ _0"> </span></span>XGboost<span class="_ _0"> </span><span class="ff1">模型并训练</span></div><div class="t m0 x1 h2 y1c ff2 fs0 fc0 sc0 ls0 ws0">xgb_model <span class="_ _7"> </span>= <span class="_ _7"> </span>XGBRegressor(**aoa_params) <span class="_ _8"> </span> <span class="_ _8"> </span># <span class="_ _8"> </span><span class="ff1">使<span class="_ _7"> </span>用<span class="_ _9"> </span></span>AOA<span class="_ _9"> </span><span class="ff1">优<span class="_ _7"> </span>化<span class="_ _7"> </span>后<span class="_ _7"> </span>的<span class="_ _7"> </span>参<span class="_ _7"> </span>数<span class="_ _7"> </span>初<span class="_ _7"> </span>始<span class="_ _7"> </span>化</span></div><div class="t m0 x1 h2 y1d ff2 fs0 fc0 sc0 ls0 ws0">XGBRegressor</div><div class="t m0 x1 h2 y1e ff2 fs0 fc0 sc0 ls0 ws0">X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2) <span class="_ _5"> </span># <span class="_ _4"> </span><span class="ff1">数据分割</span></div><div class="t m0 x1 h2 y1f ff2 fs0 fc0 sc0 ls0 ws0">xgb_model.fit(X_train, y_train) <span class="_ _5"> </span># <span class="_ _4"> </span><span class="ff1">训练模型</span></div><div class="t m0 x1 h2 y20 ff2 fs0 fc0 sc0 ls0 ws0">```</div><div class="t m0 x1 h2 y21 ff1 fs0 fc0 sc0 ls0 ws0">二、细节探索:提升模型的可学习性</div></div><div class="pi" data-data='{"ctm":[1.611830,0.000000,0.000000,1.611830,0.000000,0.000000]}'></div></div>
100+评论
captcha