采用粒子群优化径向基对围绕中心点宽
大小:1.18MB
价格:16积分
下载量:0
评分:
5.0
上传者:SIrZrpeGHauw
更新日期:2025-09-22

基于粒子群PSO算法优化RBF神经网络的变压器故障识别技术研究:详细代码注释与高准确率参考实例,基于粒子群PSO算法优化RBF神经网络的变压器故障识别技术研究:代码注释详尽,准确度高,适合初学者学习与

资源文件列表(大概)

文件名
大小
1.jpg
144.16KB
2.jpg
71.64KB
3.jpg
34.95KB
基于粒子群优化算法的神经网络在.docx
50.68KB
基于粒子群优化算法的神经网络在变压器故障识别中.docx
15.45KB
文章标题基于粒子群优化算法.html
364.19KB
文章标题基于粒子群优化算法的神经网.docx
15.92KB
采用粒子群优化径向基.html
365.07KB
采用粒子群优化径向基对围绕中.html
364.6KB
采用粒子群优化径向基的算法应用与变.docx
50.66KB
采用粒子群优化径向基的算法应用与变压.docx
50.66KB
采用粒子群优化径向基神.html
365.18KB

资源内容介绍

基于粒子群PSO算法优化RBF神经网络的变压器故障识别技术研究:详细代码注释与高准确率参考实例,基于粒子群PSO算法优化RBF神经网络的变压器故障识别技术研究:代码注释详尽,准确度高,适合初学者学习与参考,采用粒子群PSO优化RBF径向基,对围绕中心点宽度以及隐含层输出层之间的连接权值进行寻优,代码注释详细,准确率高,适合新手学习,有参考资料,算例背景是变压器故障识别,核心关键词:粒子群优化; RBF径向基; 中心点宽度; 连接权值寻优; 代码注释详细; 准确率高; 新手学习; 变压器故障识别; 参考资料; 算例背景,基于PSO-RBF算法的变压器故障识别优化代码教程
<link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/css/base.min.css" rel="stylesheet"/><link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/css/fancy.min.css" rel="stylesheet"/><link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/90426804/2/raw.css" rel="stylesheet"/><div id="sidebar" style="display: none"><div id="outline"></div></div><div class="pf w0 h0" data-page-no="1" id="pf1"><div class="pc pc1 w0 h0"><img alt="" class="bi x0 y0 w1 h1" src="/image.php?url=https://csdnimg.cn/release/download_crawler_static/90426804/bg1.jpg"/><div class="t m0 x1 h2 y1 ff1 fs0 fc0 sc0 ls0 ws0">**<span class="ff2">基于粒子群优化算法(</span>PSO<span class="ff2">)的<span class="_ _0"> </span></span>RBF<span class="_ _0"> </span><span class="ff2">神经网络在变压器故障识别中的应用</span>**</div><div class="t m0 x1 h2 y2 ff2 fs0 fc0 sc0 ls0 ws0">一、引言</div><div class="t m0 x1 h2 y3 ff2 fs0 fc0 sc0 ls0 ws0">变压器是电力系统中至关重要的设备,<span class="_ _1"></span>其故障识别和诊断对保障电网安全稳定运行具有重要</div><div class="t m0 x1 h2 y4 ff2 fs0 fc0 sc0 ls0 ws0">意义。径向基函数<span class="_ _2"></span>(<span class="ff1">RBF</span>)神经网络因其结构简单、<span class="_ _2"></span>训练速度快等特点,在故障诊断领域得</div><div class="t m0 x1 h2 y5 ff2 fs0 fc0 sc0 ls0 ws0">到了广泛应用。<span class="_ _3"></span>本文将探讨如何采用粒子群优化算法<span class="_ _3"></span>(<span class="ff1">PSO</span>)<span class="_ _3"></span>对<span class="_ _0"> </span><span class="ff1">RBF<span class="_ _0"> </span></span>神经网络进行优化,<span class="_ _3"></span>特</div><div class="t m0 x1 h2 y6 ff2 fs0 fc0 sc0 ls0 ws0">别是对围绕中心点的宽度以及隐含层与输出层之间的连接权值进行寻优,<span class="_ _1"></span>以期提高变压器故</div><div class="t m0 x1 h2 y7 ff2 fs0 fc0 sc0 ls0 ws0">障识别的准确率。</div><div class="t m0 x1 h2 y8 ff2 fs0 fc0 sc0 ls0 ws0">二、<span class="ff1">RBF<span class="_ _0"> </span></span>神经网络基础</div><div class="t m0 x1 h2 y9 ff1 fs0 fc0 sc0 ls0 ws0">RBF<span class="_ _0"> </span><span class="ff2">神经网络是一种三层前馈式神经网络,<span class="_ _3"></span>包括输入层、<span class="_ _4"></span>隐含层和输出层。<span class="_ _3"></span>其中,<span class="_ _4"></span>隐含层采</span></div><div class="t m0 x1 h2 ya ff2 fs0 fc0 sc0 ls0 ws0">用径向基函数作为激活函数,<span class="_ _5"></span>能够快速响应输入变化。<span class="_ _5"></span><span class="ff1">RBF<span class="_ _0"> </span><span class="ff2">神经网络的性能关键在于隐含层</span></span></div><div class="t m0 x1 h2 yb ff2 fs0 fc0 sc0 ls0 ws0">中心的选择以及中心与输出层之间的权值。</div><div class="t m0 x1 h2 yc ff2 fs0 fc0 sc0 ls0 ws0">三、粒子群优化算法(<span class="ff1">PSO</span>)</div><div class="t m0 x1 h2 yd ff2 fs0 fc0 sc0 ls0 ws0">粒子群优化算法<span class="_ _4"></span>(<span class="ff1">PSO</span>)<span class="_ _3"></span>是一种基于群体智能的优化算法,<span class="_ _4"></span>通过模拟鸟群、<span class="_ _4"></span>鱼群等生物群体</div><div class="t m0 x1 h2 ye ff2 fs0 fc0 sc0 ls0 ws0">的行<span class="_ _6"></span>为来<span class="_ _6"></span>进行<span class="_ _6"></span>寻优<span class="_ _6"></span>。<span class="ff1">PSO<span class="_"> </span></span>算法<span class="_ _6"></span>通过<span class="_ _6"></span>粒子<span class="_ _6"></span>的速<span class="_ _6"></span>度和<span class="_ _6"></span>位置<span class="_ _6"></span>更新<span class="_ _6"></span>来寻<span class="_ _6"></span>找最<span class="_ _6"></span>优解<span class="_ _6"></span>,适<span class="_ _6"></span>用于连<span class="_ _6"></span>续和<span class="_ _6"></span>离</div><div class="t m0 x1 h2 yf ff2 fs0 fc0 sc0 ls0 ws0">散优化问题。</div><div class="t m0 x1 h2 y10 ff2 fs0 fc0 sc0 ls0 ws0">四、<span class="ff1">PSO<span class="_ _0"> </span></span>优化<span class="_ _0"> </span><span class="ff1">RBF<span class="_ _0"> </span></span>神经网络</div><div class="t m0 x1 h2 y11 ff1 fs0 fc0 sc0 ls0 ws0">1. <span class="_ _0"> </span><span class="ff2">初始化:设定<span class="_ _6"></span>粒子群<span class="_ _6"></span>规模、<span class="_ _6"></span>惯性权<span class="_ _6"></span>重、学习<span class="_ _6"></span>因子等<span class="_ _6"></span>参数,<span class="_ _6"></span>随机初<span class="_ _6"></span>始化粒子<span class="_ _6"></span>位置和<span class="_ _6"></span>速度。</span></div><div class="t m0 x1 h2 y12 ff2 fs0 fc0 sc0 ls0 ws0">粒子<span class="_ _6"></span>的位置<span class="_ _6"></span>表示<span class="_ _7"> </span><span class="ff1">RBF<span class="_"> </span></span>神经网络<span class="_ _6"></span>的参<span class="_ _6"></span>数,<span class="_ _6"></span>包括<span class="_ _6"></span>中心<span class="_ _6"></span>点、<span class="_ _6"></span>围绕中<span class="_ _6"></span>心点<span class="_ _6"></span>的宽<span class="_ _6"></span>度以<span class="_ _6"></span>及隐<span class="_ _6"></span>含层与<span class="_ _6"></span>输出</div><div class="t m0 x1 h2 y13 ff2 fs0 fc0 sc0 ls0 ws0">层之间的连接权值。</div><div class="t m0 x1 h2 y14 ff1 fs0 fc0 sc0 ls0 ws0">2. <span class="_ _0"> </span><span class="ff2">适应度函数:<span class="_ _6"></span>定义适<span class="_ _6"></span>应度函<span class="_ _6"></span>数,用<span class="_ _6"></span>于评估粒<span class="_ _6"></span>子的优<span class="_ _6"></span>劣。在<span class="_ _6"></span>变压器<span class="_ _6"></span>故障识别<span class="_ _6"></span>中,可<span class="_ _6"></span>以采用</span></div><div class="t m0 x1 h2 y15 ff2 fs0 fc0 sc0 ls0 ws0">识别准确率作为适应度函数。</div><div class="t m0 x1 h2 y16 ff1 fs0 fc0 sc0 ls0 ws0">3. <span class="_ _8"> </span><span class="ff2">粒子更新:根据<span class="_ _8"> </span></span>PSO<span class="_"> </span><span class="ff2">算法的更新规则,更新粒子的速度和位置。通过计算每个粒子的适</span></div><div class="t m0 x1 h2 y17 ff2 fs0 fc0 sc0 ls0 ws0">应度,不断调整其位置以寻找最优解。</div><div class="t m0 x1 h2 y18 ff1 fs0 fc0 sc0 ls0 ws0">4. <span class="_ _8"> </span><span class="ff2">寻优<span class="_ _6"></span>过程:多<span class="_ _6"></span>次迭代<span class="_ _6"></span>更新粒<span class="_ _6"></span>子的位<span class="_ _6"></span>置和速度<span class="_ _6"></span>,直到<span class="_ _6"></span>达到预<span class="_ _6"></span>设的迭<span class="_ _6"></span>代次数或<span class="_ _6"></span>满足其<span class="_ _6"></span>他终止</span></div><div class="t m0 x1 h2 y19 ff2 fs0 fc0 sc0 ls0 ws0">条件。</div><div class="t m0 x1 h2 y1a ff2 fs0 fc0 sc0 ls0 ws0">五、代码注释及准确率分析</div><div class="t m0 x1 h2 y1b ff2 fs0 fc0 sc0 ls0 ws0">(此处提供伪代码及详细注释,假设使用<span class="_ _0"> </span><span class="ff1">Python<span class="_ _0"> </span></span>语言实现)</div><div class="t m0 x1 h2 y1c ff1 fs0 fc0 sc0 ls0 ws0">```python</div><div class="t m0 x1 h2 y1d ff1 fs0 fc0 sc0 ls0 ws0"># <span class="_ _8"> </span><span class="ff2">初始化粒子群及相关参数</span></div><div class="t m0 x1 h2 y1e ff1 fs0 fc0 sc0 ls0 ws0"># ... (<span class="ff2">省略初始化代码</span>)</div></div><div class="pi" data-data='{"ctm":[1.611830,0.000000,0.000000,1.611830,0.000000,0.000000]}'></div></div>

用户评论 (0)

发表评论

captcha

相关资源

光伏三相并网仿真研究:MPPT控制与两级式逆变器的高效并网策略及仿真结果分析,光伏三相并网仿真研究:MPPT控制与两级式逆变器的高效协同工作及仿真结果分析,光伏三相并网仿真 模型内容:1.光伏+M

光伏三相并网仿真研究:MPPT控制与两级式逆变器的高效并网策略及仿真结果分析,光伏三相并网仿真研究:MPPT控制与两级式逆变器的高效协同工作及仿真结果分析,光伏三相并网仿真。模型内容:1.光伏+MPPT控制+两级式并网逆变器(boost+三相桥式逆变)2.坐标变+锁相环+dq功率控制+解耦控制+电流内环电压外环控制+spwm调制3.LCL滤波仿真结果:1.逆变输出与三项380V电网同频同相2.直流母线电压800V稳定3.d轴电压稳定311V;q轴电压稳定为0V,有功功率高效输出,光伏三相并网仿真; MPPT控制; 两级式并网逆变器; 坐标变换; 锁相环; dq功率控制; 解耦控制; 电流内环电压外环控制; spwm调制; LCL滤波; 逆变输出同频同相; 直流母线电压稳定; d轴电压稳定; q轴电压稳定。,基于LCL滤波的光伏三相并网仿真:高效MPPT控制与SPWM调制技术的研究与应用

3.77MB29积分

基于Comsol技术的狄拉克半金属BDS超材料的研究与应用,狄拉克半金属BDS超材料的Comsol探究与特性分析,Comsol狄拉克半金属BDS超材料 ,Comsol; 狄拉克半金属; BDS; 超

基于Comsol技术的狄拉克半金属BDS超材料的研究与应用,狄拉克半金属BDS超材料的Comsol探究与特性分析,Comsol狄拉克半金属BDS超材料。,Comsol; 狄拉克半金属; BDS; 超材料,狄拉克半金属BDS超材料在Comsol环境中的探索与应用

1.19MB40积分

Matlab编程实现多维航迹跟踪控制与编队集群控制,应用于空中无人机等多智能体系统,Matlab编程实现多维航迹跟踪控制与编队集群控制,针对空中无人机等对象的协同避障技术,在Matlab下编程实现二维

Matlab编程实现多维航迹跟踪控制与编队集群控制,应用于空中无人机等多智能体系统,Matlab编程实现多维航迹跟踪控制与编队集群控制,针对空中无人机等对象的协同避障技术,在Matlab下编程实现二维与三维的航迹跟踪控制、路径跟踪控制和轨迹跟踪控制,实现编队集群控制与避障控制。研究对象有空中无人机、地面机器人、水面无人艇、水下机器人以及多智能体等。,二维三维航迹跟踪控制; 路径跟踪控制; 轨迹跟踪控制; 编队集群控制; 避障控制; 无人机; 地面机器人; 无人艇; 水下机器人; 多智能体,Matlab智能体航迹控制与编队避障系统实现

3.2MB27积分

基于SE算法的Matlab心音信号处理:心率计算与MFCC特征提取案例赏析,基于SE算法的Matlab心音信号处理:心率计算与MFCC特征提取案例赏析,Matlab 心音信号 心率计算 MFCC特征

基于SE算法的Matlab心音信号处理:心率计算与MFCC特征提取案例赏析,基于SE算法的Matlab心音信号处理:心率计算与MFCC特征提取案例赏析,Matlab 心音信号 心率计算 MFCC特征提取基于SE算法 案例赏析,Matlab; 心音信号; 心率计算; MFCC特征提取; SE算法; 案例赏析,基于SE算法的Matlab心音信号处理:心率计算与MFCC特征提取案例

632.57KB29积分