基于多种优化算法的广义神经网络GRNN预测模型Matlab实现及详细代码注释,基于灰狼优化算法的广义神经网络(GRNN)预测:融合鲸鱼与麻雀算法的优化策略及Matlab实现,GWO-GRNN 广义神经

XgTjhzflLZIP广义神经网络灰狼优化算法回归预测基于  1.29MB

资源文件列表:

ZIP 广义神经网络灰狼优化算法回归预测基于 大约有13个文件
  1. 1.jpg 100.24KB
  2. 2.jpg 39.27KB
  3. 3.jpg 96.96KB
  4. 基于广义神经网络的预测技术分析一引言随着大.docx 50.44KB
  5. 基于广义神经网络预.html 344.67KB
  6. 基于灰狼优化算法与多种优化算法的广义神经网络.docx 50.22KB
  7. 基于的预测方法与优化算法分析在今日的.html 344.64KB
  8. 广义神经网络灰狼优化算法回归预测基于鲸.html 343.35KB
  9. 探索神经网络与优化算法的融合与的回归预测之旅摘要.docx 50.44KB
  10. 文章标题混合优化算法在广义.html 344.21KB
  11. 标题与基于优化算法的广义神经网络回归.docx 50.03KB
  12. 标题基于优化算法的广义神经网络在回归预.docx 16.21KB
  13. 标题基于优化算法的广义神经网络预测.docx 14.99KB

资源介绍:

基于多种优化算法的广义神经网络GRNN预测模型Matlab实现及详细代码注释,基于灰狼优化算法的广义神经网络(GRNN)预测:融合鲸鱼与麻雀算法的优化策略及Matlab实现,GWO-GRNN 广义神经网络 灰狼优化算法 WOA-GRNN PSO-GRNN 回归预测 基于鲸鱼算法优化的广义神经网络(GRNN)预测 基于麻雀算法优化的广义神经网络(GRNN)预测 更多优化算法可加好友 Matlab 代码注释详细,可正常运行。 ,GWO-GRNN; 灰狼优化; WOA-GRNN; PSO-GRNN; 回归预测; 麻雀算法优化; Matlab代码注释。,基于多种优化算法的GRNN回归预测模型研究与应用

<link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/css/base.min.css" rel="stylesheet"/><link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/css/fancy.min.css" rel="stylesheet"/><link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/90426216/2/raw.css" rel="stylesheet"/><div id="sidebar" style="display: none"><div id="outline"></div></div><div class="pf w0 h0" data-page-no="1" id="pf1"><div class="pc pc1 w0 h0"><img alt="" class="bi x0 y0 w1 h1" src="/image.php?url=https://csdnimg.cn/release/download_crawler_static/90426216/bg1.jpg"/><div class="t m0 x1 h2 y1 ff1 fs0 fc0 sc0 ls0 ws0">探索神经网络与优化算法的融合:<span class="ff2">GWO-GRNN<span class="_ _0"> </span></span>与<span class="_ _0"> </span><span class="ff2">WOA-GRNN<span class="_"> </span></span>的回归预测之旅</div><div class="t m0 x1 h2 y2 ff1 fs0 fc0 sc0 ls0 ws0">摘要<span class="_ _1"></span>:<span class="_ _1"></span>本文将介绍两种基于优化算法的广义神经网络<span class="_ _2"></span>(<span class="ff2">GRNN</span>)<span class="_ _2"></span>模型,<span class="_ _2"></span>即<span class="_ _3"> </span><span class="ff2">GWO-GRNN<span class="_ _3"> </span></span>和<span class="_ _3"> </span><span class="ff2">WOA-</span></div><div class="t m0 x1 h2 y3 ff2 fs0 fc0 sc0 ls0 ws0">GRNN<span class="ff1">。<span class="_ _4"></span>我们将通过实际案例展示如何使用这些算法在回归预测领域取得卓越成果,<span class="_ _4"></span>并提供</span></div><div class="t m0 x1 h2 y4 ff1 fs0 fc0 sc0 ls0 ws0">一段<span class="_ _0"> </span><span class="ff2">MATLAB<span class="_"> </span></span>代码,详细注释了模型运行的过程。让我们一起开启这次技术探索之旅。</div><div class="t m0 x1 h2 y5 ff1 fs0 fc0 sc0 ls0 ws0">一、广识广义神经网络</div><div class="t m0 x1 h2 y6 ff1 fs0 fc0 sc0 ls0 ws0">广义神经网络<span class="_ _5"></span>(<span class="ff2">GRNN</span>)<span class="_ _5"></span>是一种非常高效的机器学习模型,<span class="_ _5"></span>尤其在回归预测领域。<span class="_ _5"></span>它的基本</div><div class="t m0 x1 h2 y7 ff1 fs0 fc0 sc0 ls0 ws0">原理是通过对历史数据进行学习和预测。<span class="_ _6"></span>当有新数据进入时,<span class="_ _6"></span><span class="ff2">GRNN<span class="_ _0"> </span><span class="ff1">可以快速根据已知信息</span></span></div><div class="t m0 x1 h2 y8 ff1 fs0 fc0 sc0 ls0 ws0">给出预测结果。</div><div class="t m0 x1 h2 y9 ff1 fs0 fc0 sc0 ls0 ws0">二、灰狼优化算法(<span class="ff2">GWO</span>)与鲸鱼算法(<span class="ff2">WOA</span>)的引入</div><div class="t m0 x1 h2 ya ff1 fs0 fc0 sc0 ls0 ws0">灰狼优化算法(<span class="ff2">GWO</span>)<span class="_ _5"></span>和鲸鱼算法(<span class="ff2">WOA</span>)<span class="_ _5"></span>是近年来新兴的优化算法。<span class="_ _5"></span>它们通过模拟自然</div><div class="t m0 x1 h2 yb ff1 fs0 fc0 sc0 ls0 ws0">界的生<span class="_ _7"></span>物行为<span class="_ _7"></span>来寻找<span class="_ _7"></span>问题的<span class="_ _7"></span>最优解<span class="_ _7"></span>。当这<span class="_ _7"></span>些算法<span class="_ _7"></span>与<span class="_ _0"> </span><span class="ff2">GRNN<span class="_"> </span></span>结合时<span class="_ _7"></span>,我们<span class="_ _7"></span>可以根<span class="_ _7"></span>据特定<span class="_ _7"></span>任务</div><div class="t m0 x1 h2 yc ff1 fs0 fc0 sc0 ls0 ws0">对神经网络的参数进行更精细的调整,从而进一步提高模型的预测能力。</div><div class="t m0 x1 h2 yd ff1 fs0 fc0 sc0 ls0 ws0">三、<span class="ff2">GWO-GRNN<span class="_ _0"> </span></span>的实践案例</div><div class="t m0 x1 h2 ye ff1 fs0 fc0 sc0 ls0 ws0">在我们的实践中,<span class="_ _8"></span>我们使用了<span class="_ _0"> </span><span class="ff2">GWO<span class="_"> </span></span>来优化<span class="_ _0"> </span><span class="ff2">GRNN<span class="_ _0"> </span></span>的参数。<span class="_ _8"></span>在某具体场景下,<span class="_ _8"></span>通过使用<span class="_ _0"> </span><span class="ff2">GWO</span></div><div class="t m0 x1 h2 yf ff1 fs0 fc0 sc0 ls0 ws0">对数据进行训练和迭代,<span class="_ _9"></span>我们成功找到了最佳参数组合,<span class="_ _9"></span>从而实现了高精度的回归预测。<span class="_ _9"></span>以</div><div class="t m0 x1 h2 y10 ff1 fs0 fc0 sc0 ls0 ws0">下是一段简化的<span class="_ _0"> </span><span class="ff2">MATLAB<span class="_"> </span></span>代码示例:</div><div class="t m0 x1 h2 y11 ff2 fs0 fc0 sc0 ls0 ws0">```matlab</div><div class="t m0 x1 h2 y12 ff2 fs0 fc0 sc0 ls0 ws0">% <span class="_ _0"> </span><span class="ff1">初始化<span class="_ _0"> </span></span>GRNN<span class="_ _0"> </span><span class="ff1">模型和<span class="_ _0"> </span></span>GWO<span class="_ _0"> </span><span class="ff1">算法参数</span></div><div class="t m0 x1 h2 y13 ff2 fs0 fc0 sc0 ls0 ws0">grnn_model = ...; % <span class="_ _0"> </span><span class="ff1">创建或加载<span class="_ _0"> </span></span>GRNN<span class="_ _0"> </span><span class="ff1">模型</span></div><div class="t m0 x1 h2 y14 ff2 fs0 fc0 sc0 ls0 ws0">gwo_params = ...; % <span class="_ _0"> </span><span class="ff1">设置<span class="_ _0"> </span></span>GWO<span class="_ _0"> </span><span class="ff1">算法的参数</span></div><div class="t m0 x1 h2 y15 ff2 fs0 fc0 sc0 ls0 ws0">% <span class="_ _0"> </span><span class="ff1">使用<span class="_ _0"> </span></span>GWO<span class="_ _0"> </span><span class="ff1">算法优化<span class="_ _0"> </span></span>GRNN<span class="_ _0"> </span><span class="ff1">模型参数</span></div><div class="t m0 x1 h2 y16 ff2 fs0 fc0 sc0 ls0 ws0">[optimized_params, best_score] = gwo_optimize_grnn(grnn_model, gwo_params);</div><div class="t m0 x1 h2 y17 ff2 fs0 fc0 sc0 ls0 ws0">% <span class="_ _0"> </span><span class="ff1">用最佳参数更新<span class="_ _0"> </span></span>GRNN<span class="_ _0"> </span><span class="ff1">模型并进行预测</span></div><div class="t m0 x1 h2 y18 ff2 fs0 fc0 sc0 ls0 ws0">grnn_model.Parameters = optimized_params;</div><div class="t m0 x1 h2 y19 ff2 fs0 fc0 sc0 ls0 ws0">prediction = predict_with_grnn(grnn_model, test_data);</div><div class="t m0 x1 h2 y1a ff2 fs0 fc0 sc0 ls0 ws0">```</div><div class="t m0 x1 h2 y1b ff1 fs0 fc0 sc0 ls0 ws0">这段<span class="_ _7"></span>代码<span class="_ _7"></span>省略<span class="_ _7"></span>了实<span class="_ _7"></span>际优<span class="_ _7"></span>化过<span class="_ _7"></span>程的<span class="_ _7"></span>具体<span class="_ _7"></span>实现<span class="_ _7"></span>细节<span class="_ _7"></span>,<span class="_ _7"></span>但足<span class="_ _7"></span>以说<span class="_ _7"></span>明如<span class="_ _7"></span>何结<span class="_ _7"></span>合<span class="_ _0"> </span><span class="ff2">GWO<span class="_"> </span></span>和<span class="_ _0"> </span><span class="ff2">GRNN<span class="_"> </span></span>进<span class="_ _7"></span>行</div><div class="t m0 x1 h2 y1c ff1 fs0 fc0 sc0 ls0 ws0">模型参数的优化和预测。通过详细的<span class="_ _0"> </span><span class="ff2">MATLAB<span class="_"> </span></span>代码注释,读者可以更好地理解整个过程。</div><div class="t m0 x1 h2 y1d ff1 fs0 fc0 sc0 ls0 ws0">四、<span class="ff2">WOA-GRNN<span class="_ _0"> </span></span>的探索之旅</div><div class="t m0 x1 h2 y1e ff1 fs0 fc0 sc0 ls0 ws0">与<span class="_ _0"> </span><span class="ff2">GWO-GRNN<span class="_ _0"> </span></span>类似,我们同样可以尝试使用鲸鱼算法(<span class="ff2">WOA</span>)来优化<span class="_ _0"> </span><span class="ff2">GRNN<span class="_ _0"> </span></span>的参数。在</div><div class="t m0 x1 h2 y1f ff1 fs0 fc0 sc0 ls0 ws0">另一个场景中,<span class="_ _2"></span>我们利用<span class="_ _0"> </span><span class="ff2">WOA<span class="_"> </span></span>的独特特性对<span class="_ _0"> </span><span class="ff2">GRNN<span class="_ _0"> </span></span>进行优化,<span class="_ _2"></span>取得了显著的预测效果提升。</div></div><div class="pi" data-data='{"ctm":[1.611830,0.000000,0.000000,1.611830,0.000000,0.000000]}'></div></div>
100+评论
captcha