基于Simulink的神经网络观测器与无人机分层编队控制的鲁棒控制复现研究文献参考,基于Simulink的神经网络观测器与无人机分层编队控制的鲁棒控制复现研究,神经网络观测器,无人机鲁棒控制,分层编队
资源内容介绍
基于Simulink的神经网络观测器与无人机分层编队控制的鲁棒控制复现研究文献参考,基于Simulink的神经网络观测器与无人机分层编队控制的鲁棒控制复现研究,神经网络观测器,无人机鲁棒控制,分层编队控制,有文献可参考。符合要求请放心联系,基于simulink,复现,保证能够运行。,神经网络观测器; 无人机鲁棒控制; 分层编队控制; 文献参考; Simulink复现; 保证运行。,基于Simulink的神经网络观测器在无人机鲁棒分层编队控制中的应用研究 <link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/css/base.min.css" rel="stylesheet"/><link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/css/fancy.min.css" rel="stylesheet"/><link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/90429711/2/raw.css" rel="stylesheet"/><div id="sidebar" style="display: none"><div id="outline"></div></div><div class="pf w0 h0" data-page-no="1" id="pf1"><div class="pc pc1 w0 h0"><img alt="" class="bi x0 y0 w1 h1" src="/image.php?url=https://csdnimg.cn/release/download_crawler_static/90429711/bg1.jpg"/><div class="t m0 x1 h2 y1 ff1 fs0 fc0 sc0 ls0 ws0">神经网络观测器在无人机鲁棒控制与分层编队控制中的应用</div><div class="t m0 x1 h2 y2 ff1 fs0 fc0 sc0 ls0 ws0">一、引言</div><div class="t m0 x1 h2 y3 ff1 fs0 fc0 sc0 ls0 ws0">随着现代科技的不断进步,<span class="_ _0"></span>无人机<span class="_ _0"></span>(<span class="ff2">UAV</span>)<span class="_ _0"></span>技术在各个领域中的应用日益广泛。<span class="_ _0"></span>其关键控制</div><div class="t m0 x1 h2 y4 ff1 fs0 fc0 sc0 ls0 ws0">技术的深入研究成为该领域的主要任务。<span class="_ _1"></span>在这篇文献中,<span class="_ _1"></span>我们将重点讨论神经网络观测器在</div><div class="t m0 x1 h2 y5 ff1 fs0 fc0 sc0 ls0 ws0">无人<span class="_ _2"></span>机鲁<span class="_ _2"></span>棒控<span class="_ _2"></span>制以<span class="_ _2"></span>及分<span class="_ _2"></span>层编<span class="_ _2"></span>队控<span class="_ _2"></span>制中<span class="_ _2"></span>的应<span class="_ _2"></span>用,<span class="_ _2"></span>并提<span class="_ _2"></span>供一<span class="_ _2"></span>个基<span class="_ _2"></span>于<span class="_ _3"> </span><span class="ff2">Simulink<span class="_"> </span></span>的复现<span class="_ _2"></span>实例<span class="_ _2"></span>,保<span class="_ _2"></span>证</div><div class="t m0 x1 h2 y6 ff1 fs0 fc0 sc0 ls0 ws0">模型可以运行。</div><div class="t m0 x1 h2 y7 ff1 fs0 fc0 sc0 ls0 ws0">二、神经网络观测器概述</div><div class="t m0 x1 h2 y8 ff1 fs0 fc0 sc0 ls0 ws0">神经网络观测器是一种先进的观测技术,<span class="_ _1"></span>用于预测和控制非线性系统的状态。<span class="_ _1"></span>在无人机控制</div><div class="t m0 x1 h2 y9 ff1 fs0 fc0 sc0 ls0 ws0">系统中,<span class="_ _0"></span>它可以用于观测飞行过程中的动态状态,<span class="_ _4"></span>如速度、<span class="_ _4"></span>位置和姿态等。<span class="_ _0"></span>通过训练神经网</div><div class="t m0 x1 h2 ya ff1 fs0 fc0 sc0 ls0 ws0">络模型,我们可以更准确地预测无人机的行为,并据此进行更有效的控制。</div><div class="t m0 x1 h2 yb ff1 fs0 fc0 sc0 ls0 ws0">三、无人机鲁棒控制</div><div class="t m0 x1 h2 yc ff1 fs0 fc0 sc0 ls0 ws0">无人机鲁棒控制是指在复杂的环境和动态干扰下,<span class="_ _1"></span>仍能保持对无人机的稳定和准确控制。<span class="_ _1"></span>这</div><div class="t m0 x1 h2 yd ff1 fs0 fc0 sc0 ls0 ws0">需要<span class="_ _2"></span>对无<span class="_ _2"></span>人机<span class="_ _2"></span>的运<span class="_ _2"></span>动学<span class="_ _2"></span>和<span class="_ _2"></span>动力<span class="_ _2"></span>学模<span class="_ _2"></span>型进<span class="_ _2"></span>行深<span class="_ _2"></span>入研<span class="_ _2"></span>究<span class="_ _2"></span>,以<span class="_ _2"></span>获取<span class="_ _2"></span>准确<span class="_ _2"></span>的数<span class="_ _2"></span>学模<span class="_ _2"></span>型。<span class="_ _2"></span>在<span class="_ _2"></span>此基<span class="_ _2"></span>础上<span class="_ _2"></span>,</div><div class="t m0 x1 h2 ye ff1 fs0 fc0 sc0 ls0 ws0">我们结合神经网络观测器进行控制,<span class="_ _1"></span>可以有效提高无人机的鲁棒性。<span class="_ _1"></span>通过神经网络的预测功</div><div class="t m0 x1 h2 yf ff1 fs0 fc0 sc0 ls0 ws0">能,可以预测无人机可能受到的干扰,从而提前调整飞行状态,实现鲁棒控制。</div><div class="t m0 x1 h2 y10 ff1 fs0 fc0 sc0 ls0 ws0">四、分层编队控制</div><div class="t m0 x1 h2 y11 ff1 fs0 fc0 sc0 ls0 ws0">在多个无人机协同执行任务时,<span class="_ _1"></span>分层编队控制显得尤为重要。<span class="_ _1"></span>它允许我们根据不同的任务需</div><div class="t m0 x1 h2 y12 ff1 fs0 fc0 sc0 ls0 ws0">求和无人机的能力,<span class="_ _4"></span>对无人机进行分组和排布。<span class="_ _5"></span>在每个层级中,<span class="_ _5"></span>我们使用神经网络观测器来</div><div class="t m0 x1 h2 y13 ff1 fs0 fc0 sc0 ls0 ws0">观测各无人机的状态,<span class="_ _1"></span>然后根据预设的规则进行编队调整。<span class="_ _1"></span>这样可以在保证编队稳定性的同</div><div class="t m0 x1 h2 y14 ff1 fs0 fc0 sc0 ls0 ws0">时,提高整体的执行效率。</div><div class="t m0 x1 h2 y15 ff1 fs0 fc0 sc0 ls0 ws0">五、基于<span class="_ _3"> </span><span class="ff2">Simulink<span class="_ _6"> </span></span>的复现</div><div class="t m0 x1 h2 y16 ff1 fs0 fc0 sc0 ls0 ws0">为了<span class="_ _2"></span>验证<span class="_ _2"></span>上述<span class="_ _2"></span>理论<span class="_ _2"></span>的有<span class="_ _2"></span>效性<span class="_ _2"></span>,我<span class="_ _2"></span>们基<span class="_ _2"></span>于<span class="_ _3"> </span><span class="ff2">Simulink<span class="_"> </span></span>进行了<span class="_ _2"></span>模型<span class="_ _2"></span>的复<span class="_ _2"></span>现。<span class="_ _2"></span>首先<span class="_ _2"></span>,我<span class="_ _2"></span>们建<span class="_ _2"></span>立了<span class="_ _2"></span>无</div><div class="t m0 x1 h2 y17 ff1 fs0 fc0 sc0 ls0 ws0">人机的运动学和动力学模型。<span class="_ _5"></span>然后,<span class="_ _4"></span>结合神经网络观测器进行了模型的构建和训练。<span class="_ _5"></span>通过仿</div><div class="t m0 x1 h2 y18 ff1 fs0 fc0 sc0 ls0 ws0">真实验,我们验证了神经网络观测器在无人机鲁棒控制和分层编队控制中的有效性。</div><div class="t m0 x1 h2 y19 ff1 fs0 fc0 sc0 ls0 ws0">六、结论</div><div class="t m0 x1 h2 y1a ff1 fs0 fc0 sc0 ls0 ws0">本文研究了神经网络观测器在无人机鲁棒控制和分层编队控制中的应用。<span class="_ _7"></span>通过理论分析和基</div><div class="t m0 x1 h2 y1b ff1 fs0 fc0 sc0 ls0 ws0">于<span class="_ _3"> </span><span class="ff2">Simulink<span class="_"> </span></span>的复现<span class="_ _2"></span>实验<span class="_ _2"></span>,我<span class="_ _2"></span>们证<span class="_ _2"></span>明了<span class="_ _2"></span>该技<span class="_ _2"></span>术在<span class="_ _2"></span>提高<span class="_ _2"></span>无人<span class="_ _2"></span>机控<span class="_ _2"></span>制系<span class="_ _2"></span>统性<span class="_ _2"></span>能方<span class="_ _2"></span>面的<span class="_ _2"></span>有效<span class="_ _2"></span>性。<span class="_ _2"></span>未</div><div class="t m0 x1 h2 y1c ff1 fs0 fc0 sc0 ls0 ws0">来,<span class="_ _2"></span>我们<span class="_ _2"></span>将继<span class="_ _2"></span>续研<span class="_ _2"></span>究更<span class="_ _2"></span>复<span class="_ _2"></span>杂的<span class="_ _2"></span>神经<span class="_ _2"></span>网络<span class="_ _2"></span>模型<span class="_ _2"></span>和算<span class="_ _2"></span>法<span class="_ _2"></span>,以<span class="_ _2"></span>进一<span class="_ _2"></span>步提<span class="_ _2"></span>高无<span class="_ _2"></span>人机<span class="_ _2"></span>的性<span class="_ _2"></span>能<span class="_ _2"></span>和适<span class="_ _2"></span>应性<span class="_ _2"></span>。</div><div class="t m0 x1 h2 y1d ff1 fs0 fc0 sc0 ls0 ws0">参考文献:</div><div class="t m0 x1 h2 y1e ff1 fs0 fc0 sc0 ls0 ws0">(此处省略参考文献)可以在实际撰写过程中根据实际引用内容填写相关文献信息。</div></div><div class="pi" data-data='{"ctm":[1.611830,0.000000,0.000000,1.611830,0.000000,0.000000]}'></div></div>