贝叶斯优化做多特
大小:6.1MB
价格:13积分
下载量:0
评分:
5.0
上传者:SIrZrpeGHauw
更新日期:2025-09-22

贝叶斯优化的GRU多特征输入单变量输出预测模型:详细注释的Matlab程序及结果可视化分析,贝叶斯优化的GRU多特征输入单变量输出预测模型:详细注释的Matlab程序及结果可视化分析,贝叶斯优化GRU

资源文件列表(大概)

文件名
大小
1.jpg
213.09KB
2.jpg
205.39KB
3.jpg
128.99KB
4.jpg
544KB
5.jpg
142.57KB
6.jpg
170.04KB
基于贝叶斯优化的模型.html
1.86MB
基于贝叶斯优化的模型在多特征输入单因变量输出预测中.docx
50.75KB
标题贝叶斯优化模型在多特征输入单个因变量输出.docx
50.01KB
贝叶斯优化做多特征输.html
1.86MB
贝叶斯优化在多特征输入单个因.html
1.86MB
贝叶斯优化在多特征输入单因变量输出拟合预测模型中的.html
1.86MB
贝叶斯优化模型在多特征输入下的.docx
50.75KB
贝叶斯优化模型是一种多特征输入单个因变量.docx
14.17KB
贝叶斯优化模型是一种能够实现多特征输入和单个因.docx
15.37KB
贝叶斯优化高效拟合预测模型实现多特征.docx
49.95KB

资源内容介绍

贝叶斯优化的GRU多特征输入单变量输出预测模型:详细注释的Matlab程序及结果可视化分析,贝叶斯优化的GRU多特征输入单变量输出预测模型:详细注释的Matlab程序及结果可视化分析,贝叶斯优化GRU做多特征输入单个因变量输出的拟合预测模型。程序内注释详细,可学习性强。程序语言为matlab,需求版本至少2020及以上。直接替数据就可以用。程序运行结束可以出优化结果图,预测拟合图,真是值与预测值对比图,可打印多个评价指标,方便分析学习。,关键词:贝叶斯优化; GRU; 多特征输入; 单因变量输出; 拟合预测模型; 程序内注释详细; 可学习性强; MATLAB 2020及以上版本; 替换数据即用; 优化结果图; 预测拟合图; 真实值与预测值对比图; 多个评价指标。,基于贝叶斯优化的GRU模型:多特征输入、单因变量输出的拟合预测框架
<link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/css/base.min.css" rel="stylesheet"/><link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/css/fancy.min.css" rel="stylesheet"/><link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/90426809/2/raw.css" rel="stylesheet"/><div id="sidebar" style="display: none"><div id="outline"></div></div><div class="pf w0 h0" data-page-no="1" id="pf1"><div class="pc pc1 w0 h0"><img alt="" class="bi x0 y0 w1 h1" src="/image.php?url=https://csdnimg.cn/release/download_crawler_static/90426809/bg1.jpg"/><div class="t m0 x1 h2 y1 ff1 fs0 fc0 sc0 ls0 ws0">基于贝叶斯优化的<span class="_ _0"> </span><span class="ff2">GRU<span class="_ _0"> </span></span>模型在多特征输入单因变量输出预测中的实践与探讨</div><div class="t m0 x1 h2 y2 ff1 fs0 fc0 sc0 ls0 ws0">在信息技术迅猛发展的今天,<span class="_ _1"></span>数据处理与预测成为了许多领域的必备技能。<span class="_ _1"></span>作为一位技术领</div><div class="t m0 x1 h2 y3 ff1 fs0 fc0 sc0 ls0 ws0">域的研究者,我<span class="_ _2"></span>们将深入探讨一<span class="_ _2"></span>种以<span class="_ _0"> </span><span class="ff2">GRU<span class="_"> </span></span>为基石的拟合预测模型,<span class="_ _2"></span>结合贝叶斯优化<span class="_ _2"></span>算法,</div><div class="t m0 x1 h2 y4 ff1 fs0 fc0 sc0 ls0 ws0">进行多特征输入单个因变量输出的分析预测。<span class="_ _3"></span>通过实践此技术,<span class="_ _3"></span>我们可以了解如何用<span class="_ _0"> </span><span class="ff2">matlab</span></div><div class="t m0 x1 h2 y5 ff1 fs0 fc0 sc0 ls0 ws0">实现该模型,并通过优化和评估提高其学习性。</div><div class="t m0 x1 h2 y6 ff1 fs0 fc0 sc0 ls0 ws0">一、入门篇<span class="ff2">——</span>理解<span class="_ _0"> </span><span class="ff2">GRU<span class="_ _0"> </span></span>和贝叶斯优化</div><div class="t m0 x1 h2 y7 ff2 fs0 fc0 sc0 ls0 ws0">GRU<span class="ff1">(门控循环单元)<span class="_ _4"></span>是循环神经网络<span class="_ _4"></span>(<span class="ff2">RNN</span>)<span class="_ _4"></span>的一种改进模型,<span class="_ _4"></span>适合处理具有时间序列特</span></div><div class="t m0 x1 h2 y8 ff1 fs0 fc0 sc0 ls0 ws0">性的数<span class="_ _2"></span>据。<span class="_ _2"></span>在多特<span class="_ _2"></span>征输<span class="_ _2"></span>入单个<span class="_ _2"></span>因变<span class="_ _2"></span>量输<span class="_ _2"></span>出的场<span class="_ _2"></span>景中<span class="_ _2"></span>,<span class="ff2">GRU<span class="_"> </span></span>可以学<span class="_ _2"></span>习时<span class="_ _2"></span>间序列<span class="_ _2"></span>中的<span class="_ _2"></span>复杂依<span class="_ _2"></span>赖</div><div class="t m0 x1 h2 y9 ff1 fs0 fc0 sc0 ls0 ws0">关系。<span class="_ _5"></span>而贝叶斯优化则是一种黑箱函数优化算法,<span class="_ _5"></span>其通过对模型的超参数进行迭代优化,<span class="_ _5"></span>以</div><div class="t m0 x1 h2 ya ff1 fs0 fc0 sc0 ls0 ws0">找到最优的模型配置。</div><div class="t m0 x1 h2 yb ff1 fs0 fc0 sc0 ls0 ws0">二、实践篇<span class="ff2">——</span>用<span class="_ _0"> </span><span class="ff2">matlab<span class="_ _0"> </span></span>实现<span class="_ _0"> </span><span class="ff2">GRU<span class="_ _0"> </span></span>模型</div><div class="t m0 x1 h2 yc ff1 fs0 fc0 sc0 ls0 ws0">下面是一个使用<span class="_ _0"> </span><span class="ff2">matlab<span class="_ _0"> </span></span>实现的简单<span class="_ _0"> </span><span class="ff2">GRU<span class="_ _0"> </span></span>模型示例代码:</div><div class="t m0 x1 h2 yd ff2 fs0 fc0 sc0 ls0 ws0">```matlab</div><div class="t m0 x1 h2 ye ff2 fs0 fc0 sc0 ls0 ws0">% <span class="_ _6"> </span><span class="ff1">假设我们已经有了训练数据<span class="_ _0"> </span></span>X_train<span class="_ _0"> </span><span class="ff1">和因变量<span class="_ _0"> </span></span>Y_train</div><div class="t m0 x1 h2 yf ff2 fs0 fc0 sc0 ls0 ws0">% <span class="_ _6"> </span><span class="ff1">定义<span class="_ _0"> </span></span>GRU<span class="_ _0"> </span><span class="ff1">模型参数</span></div><div class="t m0 x1 h2 y10 ff2 fs0 fc0 sc0 ls0 ws0">numFeatures = size(X_train, 2); % <span class="_ _6"> </span><span class="ff1">特征数量</span></div><div class="t m0 x1 h2 y11 ff2 fs0 fc0 sc0 ls0 ws0">numHiddenUnits = 50; % <span class="_ _6"> </span><span class="ff1">隐藏层单元数</span></div><div class="t m0 x1 h2 y12 ff2 fs0 fc0 sc0 ls0 ws0">numEpochs = 100; % <span class="_ _6"> </span><span class="ff1">训练轮数</span></div><div class="t m0 x1 h2 y13 ff2 fs0 fc0 sc0 ls0 ws0">% <span class="_ _6"> </span><span class="ff1">创建<span class="_ _0"> </span></span>GRU<span class="_ _0"> </span><span class="ff1">模型</span></div><div class="t m0 x1 h2 y14 ff2 fs0 fc0 sc0 ls0 ws0">gruModel = gruLayer(numHiddenUnits, 'InputMode', 'sequence');</div><div class="t m0 x1 h2 y15 ff2 fs0 fc0 sc0 ls0 ws0">net = trainNetwork(X_train, Y_train, gruModel, 'Options', ...</div><div class="t m0 x1 h2 y16 ff2 fs0 fc0 sc0 ls0 ws0"> <span class="_ _7"> </span>trainingOptions('adam', ...</div><div class="t m0 x1 h2 y17 ff2 fs0 fc0 sc0 ls0 ws0"> <span class="_ _8"> </span>'MaxEpochs', numEpochs, ...</div><div class="t m0 x1 h2 y18 ff2 fs0 fc0 sc0 ls0 ws0"> <span class="_ _8"> </span>'GradientThreshold', 1, ...</div><div class="t m0 x1 h2 y19 ff2 fs0 fc0 sc0 ls0 ws0"> <span class="_ _8"> </span>'Verbose', 1));</div><div class="t m0 x1 h2 y1a ff2 fs0 fc0 sc0 ls0 ws0">```</div><div class="t m0 x1 h2 y1b ff1 fs0 fc0 sc0 ls0 ws0">在这段代码中,<span class="_ _2"></span>我们定义了<span class="_ _0"> </span><span class="ff2">GRU<span class="_"> </span></span>的隐藏层单元数,<span class="_ _2"></span>然后根据数据创<span class="_ _2"></span>建了一个训练网<span class="_ _2"></span>络。当</div><div class="t m0 x1 h2 y1c ff1 fs0 fc0 sc0 ls0 ws0">执行到最后一行时,我们的网络将开始训练。</div><div class="t m0 x1 h2 y1d ff1 fs0 fc0 sc0 ls0 ws0">三、进阶篇<span class="ff2">——</span>贝叶斯优化<span class="_ _0"> </span><span class="ff2">GRU<span class="_ _0"> </span></span>模型超参数</div><div class="t m0 x1 h2 y1e ff1 fs0 fc0 sc0 ls0 ws0">为<span class="_ _2"></span>了<span class="_ _2"></span>进<span class="_ _2"></span>一<span class="_ _9"></span>步<span class="_ _2"></span>提<span class="_ _2"></span>高<span class="_ _2"></span>模<span class="_ _9"></span>型<span class="_ _2"></span>的<span class="_ _2"></span>性<span class="_ _2"></span>能<span class="_ _9"></span>,<span class="_ _2"></span>我<span class="_ _2"></span>们<span class="_ _2"></span>可<span class="_ _9"></span>以<span class="_ _2"></span>使<span class="_ _2"></span>用<span class="_ _2"></span>贝<span class="_ _9"></span>叶<span class="_ _2"></span>斯<span class="_ _2"></span>优<span class="_ _2"></span>化<span class="_ _9"></span>算<span class="_ _2"></span>法<span class="_ _2"></span>来<span class="_ _2"></span>寻<span class="_ _9"></span>找<span class="_ _2"></span>最<span class="_ _2"></span>优<span class="_ _2"></span>的<span class="_ _a"> </span><span class="ff2">GRU<span class="_"> </span></span>超<span class="_ _2"></span>参<span class="_ _2"></span>数<span class="_ _9"></span>。</div><div class="t m0 x1 h2 y1f ff2 fs0 fc0 sc0 ls0 ws0">Matlab <span class="_ _b"></span>2020<span class="_ _6"> </span><span class="ff1">及以上版本内置了强大的贝叶斯优化工具。<span class="_ _c"></span>这里简单介绍一下如何在<span class="_ _0"> </span><span class="ff2">matlab<span class="_ _6"> </span></span>中</span></div><div class="t m0 x1 h2 y20 ff1 fs0 fc0 sc0 ls0 ws0">应用贝叶斯优化:</div><div class="t m0 x1 h2 y21 ff2 fs0 fc0 sc0 ls0 ws0">```matlab</div><div class="t m0 x1 h2 y22 ff2 fs0 fc0 sc0 ls0 ws0">% <span class="_ _6"> </span><span class="ff1">使用<span class="_ _0"> </span></span>BayesianOptimization<span class="_ _6"> </span><span class="ff1">对<span class="_ _0"> </span></span>num<span class="_ _2"></span>HiddenUnits<span class="_ _0"> </span><span class="ff1">进行优化</span></div></div><div class="pi" data-data='{"ctm":[1.611830,0.000000,0.000000,1.611830,0.000000,0.000000]}'></div></div>

用户评论 (0)

发表评论

captcha

相关资源

基于MATLAB-Simulink仿真的混合有源滤波器(HAPF)谐波补偿效果对比图,基于MATLAB-Simulink仿真的混合有源滤波器(HAPF)谐波补偿效果对比图,混合有源滤波器(HAPF)

基于MATLAB-Simulink仿真的混合有源滤波器(HAPF)谐波补偿效果对比图,基于MATLAB-Simulink仿真的混合有源滤波器(HAPF)谐波补偿效果对比图,混合有源滤波器(HAPF)MATLAB-Simulink仿真仿真模拟的HAPF补偿前后,系统所含的谐波对比如下图所示。,HAPF(混合有源滤波器); MATLAB-Simulink仿真; 谐波对比。,MATLAB-Simulink仿真下HAPF补偿前后谐波对比分析

1.19MB45积分

基于阶梯碳交易成本的综合能源系统低碳优化调度研究:多元储能与IES联合调度策略实现及改进分析(Matlab+Yalmip+Cplex),基于阶梯碳交易成本的综合能源系统低碳优化调度研究:多元储能与IE

基于阶梯碳交易成本的综合能源系统低碳优化调度研究:多元储能与IES联合调度策略实现及改进分析(Matlab+Yalmip+Cplex),基于阶梯碳交易成本的综合能源系统低碳优化调度研究:多元储能与IES联合调度策略实现及改进分析(附Matlab+Yalmip+Cplex代码实现),计及阶梯碳交易成本+多元储能(电储能、氢储能、气储能、热储能)+综合能源系统IES联合低碳优化调度(用Matlab+Yalmip+Cplex)考虑机组和设备:热电联产机组、燃气机组、甲烷反应生成设备 电解槽、氢燃料电池、计及新能源风电消纳实现最优热负荷、最优电负荷、最优氢负荷和最优气负荷的结果注:有lunwen参考文献,是部分复现加改进,代码内包含数据。,核心关键词:阶梯碳交易成本;多元储能(电、氢、气、热储能);综合能源系统IES;低碳优化调度;Matlab;Yalmip;Cplex;热电联产机组;燃气机组;甲烷反应生成设备;电解槽;氢燃料电池;新能源风电消纳;最优热负荷;最优电负荷;最优氢负荷;最优气负荷;复现改进;代码内含数据。,基于阶梯碳交易成本的多元储能综合能源系统低碳优化调度研究

3.35MB10积分

FPGA搭建Linux系统下的PCIe模块硬盘读写系统:使用XC7Z100 FPGA实现NVMe协议与PCIe接口通信,FPGA搭建NVMe硬盘读写系统:基于XC7Z100的Linux系统PCIe模块

FPGA搭建Linux系统下的PCIe模块硬盘读写系统:使用XC7Z100 FPGA实现NVMe协议与PCIe接口通信,FPGA搭建NVMe硬盘读写系统:基于XC7Z100的Linux系统PCIe模块操作硬盘实践图片展示,FPGA搭建nvme读写硬盘系统。cpu通过pcie模块操作硬盘读写。图片是sdk下面枚举到硬盘过程中的打印。FPGA用的是xc7z100,ps跑的Linux,pl用pciex1接到硬盘(x4也可以的),FPGA; NVMe读写; PCIe模块操作; XC7Z100; Linux系统; PL用PCIEx1连接硬盘,FPGA搭建PCIe模块驱动NVMe硬盘读写系统(XC7Z100,PL配合x4接口)

873.17KB40积分

风光柴储微网优化调度模型:基于Matlab的粒子群多目标优化算法,粒子群多目标优化下的风光柴储微网调度模型解析与Matlab程序实践指南,风光柴储微网优化调度模型(matlb程序),粒子群多目标优化

风光柴储微网优化调度模型:基于Matlab的粒子群多目标优化算法,粒子群多目标优化下的风光柴储微网调度模型解析与Matlab程序实践指南,风光柴储微网优化调度模型(matlb程序),粒子群多目标优化.程序注释清晰明了,适合研究微网优化调度,微网容量配置方向基础入门的同学。,关键词:风光柴储微网优化;Matlab程序;粒子群多目标优化;程序注释清晰;微网优化调度模型;基础入门;容量配置方向。,基于风光柴储微网的粒子群多目标优化调度模型(Matlab程序)注释详解

1.72MB21积分