贝叶斯优化的GRU多特征输入单变量输出预测模型:详细注释的Matlab程序及结果可视化分析,贝叶斯优化的GRU多特征输入单变量输出预测模型:详细注释的Matlab程序及结果可视化分析,贝叶斯优化GRU
资源内容介绍
贝叶斯优化的GRU多特征输入单变量输出预测模型:详细注释的Matlab程序及结果可视化分析,贝叶斯优化的GRU多特征输入单变量输出预测模型:详细注释的Matlab程序及结果可视化分析,贝叶斯优化GRU做多特征输入单个因变量输出的拟合预测模型。程序内注释详细,可学习性强。程序语言为matlab,需求版本至少2020及以上。直接替数据就可以用。程序运行结束可以出优化结果图,预测拟合图,真是值与预测值对比图,可打印多个评价指标,方便分析学习。,关键词:贝叶斯优化; GRU; 多特征输入; 单因变量输出; 拟合预测模型; 程序内注释详细; 可学习性强; MATLAB 2020及以上版本; 替换数据即用; 优化结果图; 预测拟合图; 真实值与预测值对比图; 多个评价指标。,基于贝叶斯优化的GRU模型:多特征输入、单因变量输出的拟合预测框架 <link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/css/base.min.css" rel="stylesheet"/><link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/css/fancy.min.css" rel="stylesheet"/><link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/90426809/2/raw.css" rel="stylesheet"/><div id="sidebar" style="display: none"><div id="outline"></div></div><div class="pf w0 h0" data-page-no="1" id="pf1"><div class="pc pc1 w0 h0"><img alt="" class="bi x0 y0 w1 h1" src="/image.php?url=https://csdnimg.cn/release/download_crawler_static/90426809/bg1.jpg"/><div class="t m0 x1 h2 y1 ff1 fs0 fc0 sc0 ls0 ws0">基于贝叶斯优化的<span class="_ _0"> </span><span class="ff2">GRU<span class="_ _0"> </span></span>模型在多特征输入单因变量输出预测中的实践与探讨</div><div class="t m0 x1 h2 y2 ff1 fs0 fc0 sc0 ls0 ws0">在信息技术迅猛发展的今天,<span class="_ _1"></span>数据处理与预测成为了许多领域的必备技能。<span class="_ _1"></span>作为一位技术领</div><div class="t m0 x1 h2 y3 ff1 fs0 fc0 sc0 ls0 ws0">域的研究者,我<span class="_ _2"></span>们将深入探讨一<span class="_ _2"></span>种以<span class="_ _0"> </span><span class="ff2">GRU<span class="_"> </span></span>为基石的拟合预测模型,<span class="_ _2"></span>结合贝叶斯优化<span class="_ _2"></span>算法,</div><div class="t m0 x1 h2 y4 ff1 fs0 fc0 sc0 ls0 ws0">进行多特征输入单个因变量输出的分析预测。<span class="_ _3"></span>通过实践此技术,<span class="_ _3"></span>我们可以了解如何用<span class="_ _0"> </span><span class="ff2">matlab</span></div><div class="t m0 x1 h2 y5 ff1 fs0 fc0 sc0 ls0 ws0">实现该模型,并通过优化和评估提高其学习性。</div><div class="t m0 x1 h2 y6 ff1 fs0 fc0 sc0 ls0 ws0">一、入门篇<span class="ff2">——</span>理解<span class="_ _0"> </span><span class="ff2">GRU<span class="_ _0"> </span></span>和贝叶斯优化</div><div class="t m0 x1 h2 y7 ff2 fs0 fc0 sc0 ls0 ws0">GRU<span class="ff1">(门控循环单元)<span class="_ _4"></span>是循环神经网络<span class="_ _4"></span>(<span class="ff2">RNN</span>)<span class="_ _4"></span>的一种改进模型,<span class="_ _4"></span>适合处理具有时间序列特</span></div><div class="t m0 x1 h2 y8 ff1 fs0 fc0 sc0 ls0 ws0">性的数<span class="_ _2"></span>据。<span class="_ _2"></span>在多特<span class="_ _2"></span>征输<span class="_ _2"></span>入单个<span class="_ _2"></span>因变<span class="_ _2"></span>量输<span class="_ _2"></span>出的场<span class="_ _2"></span>景中<span class="_ _2"></span>,<span class="ff2">GRU<span class="_"> </span></span>可以学<span class="_ _2"></span>习时<span class="_ _2"></span>间序列<span class="_ _2"></span>中的<span class="_ _2"></span>复杂依<span class="_ _2"></span>赖</div><div class="t m0 x1 h2 y9 ff1 fs0 fc0 sc0 ls0 ws0">关系。<span class="_ _5"></span>而贝叶斯优化则是一种黑箱函数优化算法,<span class="_ _5"></span>其通过对模型的超参数进行迭代优化,<span class="_ _5"></span>以</div><div class="t m0 x1 h2 ya ff1 fs0 fc0 sc0 ls0 ws0">找到最优的模型配置。</div><div class="t m0 x1 h2 yb ff1 fs0 fc0 sc0 ls0 ws0">二、实践篇<span class="ff2">——</span>用<span class="_ _0"> </span><span class="ff2">matlab<span class="_ _0"> </span></span>实现<span class="_ _0"> </span><span class="ff2">GRU<span class="_ _0"> </span></span>模型</div><div class="t m0 x1 h2 yc ff1 fs0 fc0 sc0 ls0 ws0">下面是一个使用<span class="_ _0"> </span><span class="ff2">matlab<span class="_ _0"> </span></span>实现的简单<span class="_ _0"> </span><span class="ff2">GRU<span class="_ _0"> </span></span>模型示例代码:</div><div class="t m0 x1 h2 yd ff2 fs0 fc0 sc0 ls0 ws0">```matlab</div><div class="t m0 x1 h2 ye ff2 fs0 fc0 sc0 ls0 ws0">% <span class="_ _6"> </span><span class="ff1">假设我们已经有了训练数据<span class="_ _0"> </span></span>X_train<span class="_ _0"> </span><span class="ff1">和因变量<span class="_ _0"> </span></span>Y_train</div><div class="t m0 x1 h2 yf ff2 fs0 fc0 sc0 ls0 ws0">% <span class="_ _6"> </span><span class="ff1">定义<span class="_ _0"> </span></span>GRU<span class="_ _0"> </span><span class="ff1">模型参数</span></div><div class="t m0 x1 h2 y10 ff2 fs0 fc0 sc0 ls0 ws0">numFeatures = size(X_train, 2); % <span class="_ _6"> </span><span class="ff1">特征数量</span></div><div class="t m0 x1 h2 y11 ff2 fs0 fc0 sc0 ls0 ws0">numHiddenUnits = 50; % <span class="_ _6"> </span><span class="ff1">隐藏层单元数</span></div><div class="t m0 x1 h2 y12 ff2 fs0 fc0 sc0 ls0 ws0">numEpochs = 100; % <span class="_ _6"> </span><span class="ff1">训练轮数</span></div><div class="t m0 x1 h2 y13 ff2 fs0 fc0 sc0 ls0 ws0">% <span class="_ _6"> </span><span class="ff1">创建<span class="_ _0"> </span></span>GRU<span class="_ _0"> </span><span class="ff1">模型</span></div><div class="t m0 x1 h2 y14 ff2 fs0 fc0 sc0 ls0 ws0">gruModel = gruLayer(numHiddenUnits, 'InputMode', 'sequence');</div><div class="t m0 x1 h2 y15 ff2 fs0 fc0 sc0 ls0 ws0">net = trainNetwork(X_train, Y_train, gruModel, 'Options', ...</div><div class="t m0 x1 h2 y16 ff2 fs0 fc0 sc0 ls0 ws0"> <span class="_ _7"> </span>trainingOptions('adam', ...</div><div class="t m0 x1 h2 y17 ff2 fs0 fc0 sc0 ls0 ws0"> <span class="_ _8"> </span>'MaxEpochs', numEpochs, ...</div><div class="t m0 x1 h2 y18 ff2 fs0 fc0 sc0 ls0 ws0"> <span class="_ _8"> </span>'GradientThreshold', 1, ...</div><div class="t m0 x1 h2 y19 ff2 fs0 fc0 sc0 ls0 ws0"> <span class="_ _8"> </span>'Verbose', 1));</div><div class="t m0 x1 h2 y1a ff2 fs0 fc0 sc0 ls0 ws0">```</div><div class="t m0 x1 h2 y1b ff1 fs0 fc0 sc0 ls0 ws0">在这段代码中,<span class="_ _2"></span>我们定义了<span class="_ _0"> </span><span class="ff2">GRU<span class="_"> </span></span>的隐藏层单元数,<span class="_ _2"></span>然后根据数据创<span class="_ _2"></span>建了一个训练网<span class="_ _2"></span>络。当</div><div class="t m0 x1 h2 y1c ff1 fs0 fc0 sc0 ls0 ws0">执行到最后一行时,我们的网络将开始训练。</div><div class="t m0 x1 h2 y1d ff1 fs0 fc0 sc0 ls0 ws0">三、进阶篇<span class="ff2">——</span>贝叶斯优化<span class="_ _0"> </span><span class="ff2">GRU<span class="_ _0"> </span></span>模型超参数</div><div class="t m0 x1 h2 y1e ff1 fs0 fc0 sc0 ls0 ws0">为<span class="_ _2"></span>了<span class="_ _2"></span>进<span class="_ _2"></span>一<span class="_ _9"></span>步<span class="_ _2"></span>提<span class="_ _2"></span>高<span class="_ _2"></span>模<span class="_ _9"></span>型<span class="_ _2"></span>的<span class="_ _2"></span>性<span class="_ _2"></span>能<span class="_ _9"></span>,<span class="_ _2"></span>我<span class="_ _2"></span>们<span class="_ _2"></span>可<span class="_ _9"></span>以<span class="_ _2"></span>使<span class="_ _2"></span>用<span class="_ _2"></span>贝<span class="_ _9"></span>叶<span class="_ _2"></span>斯<span class="_ _2"></span>优<span class="_ _2"></span>化<span class="_ _9"></span>算<span class="_ _2"></span>法<span class="_ _2"></span>来<span class="_ _2"></span>寻<span class="_ _9"></span>找<span class="_ _2"></span>最<span class="_ _2"></span>优<span class="_ _2"></span>的<span class="_ _a"> </span><span class="ff2">GRU<span class="_"> </span></span>超<span class="_ _2"></span>参<span class="_ _2"></span>数<span class="_ _9"></span>。</div><div class="t m0 x1 h2 y1f ff2 fs0 fc0 sc0 ls0 ws0">Matlab <span class="_ _b"></span>2020<span class="_ _6"> </span><span class="ff1">及以上版本内置了强大的贝叶斯优化工具。<span class="_ _c"></span>这里简单介绍一下如何在<span class="_ _0"> </span><span class="ff2">matlab<span class="_ _6"> </span></span>中</span></div><div class="t m0 x1 h2 y20 ff1 fs0 fc0 sc0 ls0 ws0">应用贝叶斯优化:</div><div class="t m0 x1 h2 y21 ff2 fs0 fc0 sc0 ls0 ws0">```matlab</div><div class="t m0 x1 h2 y22 ff2 fs0 fc0 sc0 ls0 ws0">% <span class="_ _6"> </span><span class="ff1">使用<span class="_ _0"> </span></span>BayesianOptimization<span class="_ _6"> </span><span class="ff1">对<span class="_ _0"> </span></span>num<span class="_ _2"></span>HiddenUnits<span class="_ _0"> </span><span class="ff1">进行优化</span></div></div><div class="pi" data-data='{"ctm":[1.611830,0.000000,0.000000,1.611830,0.000000,0.000000]}'></div></div>