基于遗传算法的车辆优化调度求解策略:最小成本路径规划与配送问题的Matlab实现,基于遗传算法的车辆优化调度策略:最小成本路径求解与配送问题应用matlab代码,基于遗传算法的车辆优化调度-matla
资源内容介绍
基于遗传算法的车辆优化调度求解策略:最小成本路径规划与配送问题的Matlab实现,基于遗传算法的车辆优化调度策略:最小成本路径求解与配送问题应用matlab代码,基于遗传算法的车辆优化调度-matlab代码考虑供应过剩惩罚、供应不足惩罚成本、车辆路径成本和车辆固定使用费用,以总成本最小为优化目标,采用遗传算法进行求解最优路径。代码适用于最优路径问题,配送问题。,遗传算法; 车辆优化调度; 总成本最小化; 供应过剩惩罚; 供应不足惩罚成本; 车辆路径成本; 车辆固定使用费用; MATLAB代码; 最优路径问题; 配送问题,基于遗传算法的车辆调度优化 - 考虑多成本因素的Matlab代码 <link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/css/base.min.css" rel="stylesheet"/><link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/css/fancy.min.css" rel="stylesheet"/><link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/90426025/2/raw.css" rel="stylesheet"/><div id="sidebar" style="display: none"><div id="outline"></div></div><div class="pf w0 h0" data-page-no="1" id="pf1"><div class="pc pc1 w0 h0"><img alt="" class="bi x0 y0 w1 h1" src="/image.php?url=https://csdnimg.cn/release/download_crawler_static/90426025/bg1.jpg"/><div class="t m0 x1 h2 y1 ff1 fs0 fc0 sc0 ls0 ws0">基于遗传算法的车辆优化调度<span class="ff2"> <span class="_ _0"> </span>MATLAB <span class="_ _0"> </span></span>代码</div><div class="t m0 x1 h2 y2 ff1 fs0 fc0 sc0 ls0 ws0">一、问题概述</div><div class="t m0 x1 h2 y3 ff1 fs0 fc0 sc0 ls0 ws0">在物流配送和车辆路径规划中,<span class="_ _1"></span>我们经常需要考虑到一系列的配送点和它们的供需情况,<span class="_ _1"></span>旨</div><div class="t m0 x1 h2 y4 ff1 fs0 fc0 sc0 ls0 ws0">在找出一种最优的路径,<span class="_ _2"></span>使得总成本最小。<span class="_ _2"></span>其中总成本通常考虑了供应过剩惩罚、<span class="_ _2"></span>供应不足</div><div class="t m0 x1 h2 y5 ff1 fs0 fc0 sc0 ls0 ws0">惩罚成本、<span class="_ _1"></span>车辆路径成本以及车辆固定使用费用等因素。<span class="_ _1"></span>这里我们使用遗传算法来解决这一</div><div class="t m0 x1 h2 y6 ff1 fs0 fc0 sc0 ls0 ws0">优化问题。</div><div class="t m0 x1 h2 y7 ff1 fs0 fc0 sc0 ls0 ws0">二、遗传算法的基本原理</div><div class="t m0 x1 h2 y8 ff1 fs0 fc0 sc0 ls0 ws0">遗传算法是一种启发式搜索算法,<span class="_ _2"></span>通过模拟自然界的进化过程,<span class="_ _2"></span>进行种群中个体的选择、<span class="_ _2"></span>交</div><div class="t m0 x1 h2 y9 ff1 fs0 fc0 sc0 ls0 ws0">叉和变异等操作,从而在搜索空间中寻找最优解。</div><div class="t m0 x1 h2 ya ff1 fs0 fc0 sc0 ls0 ws0">三、基于遗传算法的车辆优化调度<span class="ff2"> <span class="_ _0"> </span>MATLAB <span class="_ _0"> </span></span>代码</div><div class="t m0 x1 h2 yb ff1 fs0 fc0 sc0 ls0 ws0">下面是一个简化版的<span class="ff2"> <span class="_ _0"> </span>MATLAB <span class="_ _0"> </span></span>代码示例,用于解决基于遗传算法的车辆优化调度问题。</div><div class="t m0 x1 h2 yc ff2 fs0 fc0 sc0 ls0 ws0">```matlab</div><div class="t m0 x1 h2 yd ff2 fs0 fc0 sc0 ls0 ws0">% <span class="_ _0"> </span><span class="ff1">初始化参数</span></div><div class="t m0 x1 h2 ye ff2 fs0 fc0 sc0 ls0 ws0">popSize = 100; <span class="_ _3"> </span>% <span class="_ _0"> </span><span class="ff1">种群大小</span></div><div class="t m0 x1 h2 yf ff2 fs0 fc0 sc0 ls0 ws0">maxGen = 100; <span class="_ _3"> </span>% <span class="_ _0"> </span><span class="ff1">最大进化代数</span></div><div class="t m0 x1 h2 y10 ff2 fs0 fc0 sc0 ls0 ws0">c1 = 0.5; <span class="_ _4"> </span>% <span class="_ _0"> </span><span class="ff1">交叉概率</span></div><div class="t m0 x1 h2 y11 ff2 fs0 fc0 sc0 ls0 ws0">c2 = 0.1; <span class="_ _4"> </span>% <span class="_ _0"> </span><span class="ff1">变异概率</span></div><div class="t m0 x1 h2 y12 ff2 fs0 fc0 sc0 ls0 ws0">demands = [...]; <span class="_ _5"> </span>% <span class="_ _0"> </span><span class="ff1">配送需求矩阵(行代表点,列代表需求量)</span></div><div class="t m0 x1 h2 y13 ff2 fs0 fc0 sc0 ls0 ws0">supply = [...]; <span class="_ _6"> </span>% <span class="_ _0"> </span><span class="ff1">供应点及其供应量</span></div><div class="t m0 x1 h2 y14 ff2 fs0 fc0 sc0 ls0 ws0">penaltyOverSupply = 1; <span class="_ _7"> </span>% <span class="_ _0"> </span><span class="ff1">供应过剩惩罚成本</span></div><div class="t m0 x1 h2 y15 ff2 fs0 fc0 sc0 ls0 ws0">penaltyUnderSupply = 2; % <span class="_ _0"> </span><span class="ff1">供应不足惩罚成本</span></div><div class="t m0 x1 h2 y16 ff2 fs0 fc0 sc0 ls0 ws0">fixedCostPerVehicle = 5; <span class="_ _7"> </span>% <span class="_ _0"> </span><span class="ff1">车辆固定使用费用</span></div><div class="t m0 x1 h2 y17 ff2 fs0 fc0 sc0 ls0 ws0">routeCost = ...; <span class="_ _8"> </span>% <span class="_ _0"> </span><span class="ff1">各点间路径成本矩阵</span></div><div class="t m0 x1 h2 y18 ff2 fs0 fc0 sc0 ls0 ws0">% <span class="_ _0"> </span><span class="ff1">初始化种群</span></div><div class="t m0 x1 h2 y19 ff2 fs0 fc0 sc0 ls0 ws0">population = initializePopulation(popSize, demands, supply, ...);</div><div class="t m0 x1 h2 y1a ff2 fs0 fc0 sc0 ls0 ws0">for generation = 1:maxGen</div><div class="t m0 x1 h2 y1b ff2 fs0 fc0 sc0 ls0 ws0"> <span class="_ _9"> </span>% <span class="_ _0"> </span><span class="ff1">计算每个个体的适应度(总成本)</span></div><div class="t m0 x1 h2 y1c ff2 fs0 fc0 sc0 ls0 ws0"> <span class="_ _9"> </span>fitness = calculateFitness(population, demands, supply, penaltyOverSupply, ...</div><div class="t m0 x1 h2 y1d ff2 fs0 fc0 sc0 ls0 ws0"> <span class="_ _a"> </span>penaltyUnderSupply, fixedCostPerVehicle, routeCost);</div><div class="t m0 x1 h2 y1e ff2 fs0 fc0 sc0 ls0 ws0"> </div><div class="t m0 x1 h2 y1f ff2 fs0 fc0 sc0 ls0 ws0"> <span class="_ _9"> </span>% <span class="_ _0"> </span><span class="ff1">选择操作(根据适应度选择父代)</span></div><div class="t m0 x1 h2 y20 ff2 fs0 fc0 sc0 ls0 ws0"> <span class="_ _9"> </span>selectedPopulation = selection(population, fitness);</div><div class="t m0 x1 h2 y21 ff2 fs0 fc0 sc0 ls0 ws0"> </div><div class="t m0 x1 h2 y22 ff2 fs0 fc0 sc0 ls0 ws0"> <span class="_ _9"> </span>% <span class="_ _0"> </span><span class="ff1">交叉操作(生成子代)</span></div><div class="t m0 x1 h2 y23 ff2 fs0 fc0 sc0 ls0 ws0"> <span class="_ _9"> </span>offspringPopulation = crossover(selectedPopulation, c1);</div></div><div class="pi" data-data='{"ctm":[1.611830,0.000000,0.000000,1.611830,0.000000,0.000000]}'></div></div>