基于遗传算法的车辆优化调度求解策略:最小成本路径规划与配送问题的Matlab实现,基于遗传算法的车辆优化调度策略:最小成本路径求解与配送问题应用matlab代码,基于遗传算法的车辆优化调度-matla

YFatGuGPZIP基于遗传算法的车辆优化调度代码考虑供应过剩惩罚供  1.46MB

资源文件列表:

ZIP 基于遗传算法的车辆优化调度代码考虑供应过剩惩罚供 大约有13个文件
  1. 1.jpg 101.45KB
  2. 2.jpg 40.18KB
  3. 3.jpg 183.49KB
  4. 在物流领域车辆调度是一个非常重要的问题通过合理.docx 15.58KB
  5. 基于遗传算法的车辆优.html 463.87KB
  6. 基于遗传算法的车辆优化调度代码.html 463.57KB
  7. 基于遗传算法的车辆优化调度代码一问题.docx 53.2KB
  8. 基于遗传算法的车辆优化调度代码在现.docx 16.82KB
  9. 基于遗传算法的车辆优化调度代码解析.docx 50.35KB
  10. 基于遗传算法的车辆优化调度代码解析一引言随着物流.docx 51.5KB
  11. 基于遗传算法的车辆优化调度技术分析与代码实践.docx 51.17KB
  12. 基于遗传算法的车辆优化调度是一种有效的解决最.docx 50.04KB
  13. 探索遗传算法在车辆优化调.html 463.41KB

资源介绍:

基于遗传算法的车辆优化调度求解策略:最小成本路径规划与配送问题的Matlab实现,基于遗传算法的车辆优化调度策略:最小成本路径求解与配送问题应用matlab代码,基于遗传算法的车辆优化调度-matlab代码 考虑供应过剩惩罚、供应不足惩罚成本、车辆路径成本和车辆固定使用费用,以总成本最小为优化目标,采用遗传算法进行求解最优路径。 代码适用于最优路径问题,配送问题。 ,遗传算法; 车辆优化调度; 总成本最小化; 供应过剩惩罚; 供应不足惩罚成本; 车辆路径成本; 车辆固定使用费用; MATLAB代码; 最优路径问题; 配送问题,基于遗传算法的车辆调度优化 - 考虑多成本因素的Matlab代码

<link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/css/base.min.css" rel="stylesheet"/><link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/css/fancy.min.css" rel="stylesheet"/><link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/90426025/2/raw.css" rel="stylesheet"/><div id="sidebar" style="display: none"><div id="outline"></div></div><div class="pf w0 h0" data-page-no="1" id="pf1"><div class="pc pc1 w0 h0"><img alt="" class="bi x0 y0 w1 h1" src="/image.php?url=https://csdnimg.cn/release/download_crawler_static/90426025/bg1.jpg"/><div class="t m0 x1 h2 y1 ff1 fs0 fc0 sc0 ls0 ws0">基于遗传算法的车辆优化调度<span class="ff2"> <span class="_ _0"> </span>MATLAB <span class="_ _0"> </span></span>代码</div><div class="t m0 x1 h2 y2 ff1 fs0 fc0 sc0 ls0 ws0">一、问题概述</div><div class="t m0 x1 h2 y3 ff1 fs0 fc0 sc0 ls0 ws0">在物流配送和车辆路径规划中,<span class="_ _1"></span>我们经常需要考虑到一系列的配送点和它们的供需情况,<span class="_ _1"></span>旨</div><div class="t m0 x1 h2 y4 ff1 fs0 fc0 sc0 ls0 ws0">在找出一种最优的路径,<span class="_ _2"></span>使得总成本最小。<span class="_ _2"></span>其中总成本通常考虑了供应过剩惩罚、<span class="_ _2"></span>供应不足</div><div class="t m0 x1 h2 y5 ff1 fs0 fc0 sc0 ls0 ws0">惩罚成本、<span class="_ _1"></span>车辆路径成本以及车辆固定使用费用等因素。<span class="_ _1"></span>这里我们使用遗传算法来解决这一</div><div class="t m0 x1 h2 y6 ff1 fs0 fc0 sc0 ls0 ws0">优化问题。</div><div class="t m0 x1 h2 y7 ff1 fs0 fc0 sc0 ls0 ws0">二、遗传算法的基本原理</div><div class="t m0 x1 h2 y8 ff1 fs0 fc0 sc0 ls0 ws0">遗传算法是一种启发式搜索算法,<span class="_ _2"></span>通过模拟自然界的进化过程,<span class="_ _2"></span>进行种群中个体的选择、<span class="_ _2"></span>交</div><div class="t m0 x1 h2 y9 ff1 fs0 fc0 sc0 ls0 ws0">叉和变异等操作,从而在搜索空间中寻找最优解。</div><div class="t m0 x1 h2 ya ff1 fs0 fc0 sc0 ls0 ws0">三、基于遗传算法的车辆优化调度<span class="ff2"> <span class="_ _0"> </span>MATLAB <span class="_ _0"> </span></span>代码</div><div class="t m0 x1 h2 yb ff1 fs0 fc0 sc0 ls0 ws0">下面是一个简化版的<span class="ff2"> <span class="_ _0"> </span>MATLAB <span class="_ _0"> </span></span>代码示例,用于解决基于遗传算法的车辆优化调度问题。</div><div class="t m0 x1 h2 yc ff2 fs0 fc0 sc0 ls0 ws0">```matlab</div><div class="t m0 x1 h2 yd ff2 fs0 fc0 sc0 ls0 ws0">% <span class="_ _0"> </span><span class="ff1">初始化参数</span></div><div class="t m0 x1 h2 ye ff2 fs0 fc0 sc0 ls0 ws0">popSize = 100; <span class="_ _3"> </span>% <span class="_ _0"> </span><span class="ff1">种群大小</span></div><div class="t m0 x1 h2 yf ff2 fs0 fc0 sc0 ls0 ws0">maxGen = 100; <span class="_ _3"> </span>% <span class="_ _0"> </span><span class="ff1">最大进化代数</span></div><div class="t m0 x1 h2 y10 ff2 fs0 fc0 sc0 ls0 ws0">c1 = 0.5; <span class="_ _4"> </span>% <span class="_ _0"> </span><span class="ff1">交叉概率</span></div><div class="t m0 x1 h2 y11 ff2 fs0 fc0 sc0 ls0 ws0">c2 = 0.1; <span class="_ _4"> </span>% <span class="_ _0"> </span><span class="ff1">变异概率</span></div><div class="t m0 x1 h2 y12 ff2 fs0 fc0 sc0 ls0 ws0">demands = [...]; <span class="_ _5"> </span>% <span class="_ _0"> </span><span class="ff1">配送需求矩阵(行代表点,列代表需求量)</span></div><div class="t m0 x1 h2 y13 ff2 fs0 fc0 sc0 ls0 ws0">supply = [...]; <span class="_ _6"> </span>% <span class="_ _0"> </span><span class="ff1">供应点及其供应量</span></div><div class="t m0 x1 h2 y14 ff2 fs0 fc0 sc0 ls0 ws0">penaltyOverSupply = 1; <span class="_ _7"> </span>% <span class="_ _0"> </span><span class="ff1">供应过剩惩罚成本</span></div><div class="t m0 x1 h2 y15 ff2 fs0 fc0 sc0 ls0 ws0">penaltyUnderSupply = 2; % <span class="_ _0"> </span><span class="ff1">供应不足惩罚成本</span></div><div class="t m0 x1 h2 y16 ff2 fs0 fc0 sc0 ls0 ws0">fixedCostPerVehicle = 5; <span class="_ _7"> </span>% <span class="_ _0"> </span><span class="ff1">车辆固定使用费用</span></div><div class="t m0 x1 h2 y17 ff2 fs0 fc0 sc0 ls0 ws0">routeCost = ...; <span class="_ _8"> </span>% <span class="_ _0"> </span><span class="ff1">各点间路径成本矩阵</span></div><div class="t m0 x1 h2 y18 ff2 fs0 fc0 sc0 ls0 ws0">% <span class="_ _0"> </span><span class="ff1">初始化种群</span></div><div class="t m0 x1 h2 y19 ff2 fs0 fc0 sc0 ls0 ws0">population = initializePopulation(popSize, demands, supply, ...);</div><div class="t m0 x1 h2 y1a ff2 fs0 fc0 sc0 ls0 ws0">for generation = 1:maxGen</div><div class="t m0 x1 h2 y1b ff2 fs0 fc0 sc0 ls0 ws0"> <span class="_ _9"> </span>% <span class="_ _0"> </span><span class="ff1">计算每个个体的适应度(总成本)</span></div><div class="t m0 x1 h2 y1c ff2 fs0 fc0 sc0 ls0 ws0"> <span class="_ _9"> </span>fitness = calculateFitness(population, demands, supply, penaltyOverSupply, ...</div><div class="t m0 x1 h2 y1d ff2 fs0 fc0 sc0 ls0 ws0"> <span class="_ _a"> </span>penaltyUnderSupply, fixedCostPerVehicle, routeCost);</div><div class="t m0 x1 h2 y1e ff2 fs0 fc0 sc0 ls0 ws0"> </div><div class="t m0 x1 h2 y1f ff2 fs0 fc0 sc0 ls0 ws0"> <span class="_ _9"> </span>% <span class="_ _0"> </span><span class="ff1">选择操作(根据适应度选择父代)</span></div><div class="t m0 x1 h2 y20 ff2 fs0 fc0 sc0 ls0 ws0"> <span class="_ _9"> </span>selectedPopulation = selection(population, fitness);</div><div class="t m0 x1 h2 y21 ff2 fs0 fc0 sc0 ls0 ws0"> </div><div class="t m0 x1 h2 y22 ff2 fs0 fc0 sc0 ls0 ws0"> <span class="_ _9"> </span>% <span class="_ _0"> </span><span class="ff1">交叉操作(生成子代)</span></div><div class="t m0 x1 h2 y23 ff2 fs0 fc0 sc0 ls0 ws0"> <span class="_ _9"> </span>offspringPopulation = crossover(selectedPopulation, c1);</div></div><div class="pi" data-data='{"ctm":[1.611830,0.000000,0.000000,1.611830,0.000000,0.000000]}'></div></div>
100+评论
captcha