基于无迹卡尔曼滤波的车辆状态观测器:Carsim与Simulink联合应用及二次开发指南,基于无迹卡尔曼滤波的车辆状态观测器:Carsim与Simulink联合应用实践及详解,基于无迹卡尔曼滤波(Un

YFatGuGPZIP基于无迹卡  907.87KB

资源文件列表:

ZIP 基于无迹卡 大约有12个文件
  1. 1.jpg 72.34KB
  2. 2.jpg 69.59KB
  3. 基于无迹卡尔曼滤.html 217.46KB
  4. 基于无迹卡尔曼滤波的车辆状.html 218.87KB
  5. 基于无迹卡尔曼滤波的车辆状态观测器与和的联合应用一.docx 50.45KB
  6. 基于无迹卡尔曼滤波的车辆状态观测器与联.docx 51.15KB
  7. 基于无迹卡尔曼滤波的车辆状态观测器与联合应.html 218.8KB
  8. 基于无迹卡尔曼滤波的车辆状态观测器与联合车辆状态.docx 15.08KB
  9. 基于无迹卡尔曼滤波的车辆状态观测器在与中的融合.docx 50.64KB
  10. 基于无迹卡尔曼滤波的车辆状态观测器深度融合.docx 51.15KB
  11. 基于无迹卡尔曼滤波的车辆状态观测器设计.html 218.26KB
  12. 西门子在污水处理系统中的程序设计与应用.docx 17.06KB

资源介绍:

基于无迹卡尔曼滤波的车辆状态观测器:Carsim与Simulink联合应用及二次开发指南,基于无迹卡尔曼滤波的车辆状态观测器:Carsim与Simulink联合应用实践及详解,基于无迹卡尔曼滤波(Unscented Kalmam Filter, UKF)的车辆状态观测器 Carsim与Simulink联合 可估计车辆Vx,β,γ(效果见图) UKF使用子函数形式编程,只要定义好状态方程和观测方程,便可方便的进行二次开发 Carsim2019 MATLAB2020a 可提供对应的低版本simulink文件 带有详细注释和说明文档 Carsim与Simulink联合估计难度与单纯的Simulink模型估计难度不同 ,UKF; Carsim; Simulink联合; 状态观测器; 低版本文件; 注释与文档; 联合估计难度,基于UKF的车辆状态观测器:Carsim与Simulink联合估计及应用效果展示

<link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/css/base.min.css" rel="stylesheet"/><link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/css/fancy.min.css" rel="stylesheet"/><link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/90426022/2/raw.css" rel="stylesheet"/><div id="sidebar" style="display: none"><div id="outline"></div></div><div class="pf w0 h0" data-page-no="1" id="pf1"><div class="pc pc1 w0 h0"><img alt="" class="bi x0 y0 w1 h1" src="/image.php?url=https://csdnimg.cn/release/download_crawler_static/90426022/bg1.jpg"/><div class="t m0 x1 h2 y1 ff1 fs0 fc0 sc0 ls0 ws0">**<span class="ff2">基于无迹卡尔曼滤波的车辆状态观测器</span>——<span class="ff2">深度融合<span class="_ _0"> </span></span>Carsim<span class="_ _0"> </span><span class="ff2">与<span class="_ _0"> </span></span>Simulink**</div><div class="t m0 x1 h2 y2 ff2 fs0 fc0 sc0 ls0 ws0">在这个技术博文中,我们将探索一个令人兴奋的领域<span class="ff1">——</span>基于无迹卡尔曼滤波(<span class="ff1">Unscented </span></div><div class="t m0 x1 h2 y3 ff1 fs0 fc0 sc0 ls0 ws0">Kalman Filter, UKF<span class="ff2">)<span class="_ _1"></span>的车辆状态观测器。<span class="_ _1"></span>这种技术不仅在车辆动力学研究中有着广泛的应用,</span></div><div class="t m0 x1 h2 y4 ff2 fs0 fc0 sc0 ls0 ws0">而且对于提升车辆控制系统的性能至关重要。</div><div class="t m0 x1 h2 y5 ff2 fs0 fc0 sc0 ls0 ws0">一、背景介绍</div><div class="t m0 x1 h2 y6 ff2 fs0 fc0 sc0 ls0 ws0">在现代车辆控制系统中,<span class="_ _2"></span>准确估计车辆的动态状态参数<span class="_ _2"></span>(如速度、<span class="_ _2"></span>侧倾角等)<span class="_ _2"></span>对于车辆的稳</div><div class="t m0 x1 h2 y7 ff2 fs0 fc0 sc0 ls0 ws0">定<span class="_ _3"></span>性<span class="_ _3"></span>和<span class="_ _3"></span>安<span class="_ _3"></span>全<span class="_ _3"></span>性<span class="_ _3"></span>至<span class="_ _3"></span>关<span class="_ _3"></span>重<span class="_ _3"></span>要<span class="_ _3"></span>。<span class="_ _3"></span>而<span class="_ _4"> </span><span class="ff1">UKF<span class="_ _4"> </span></span>正<span class="_ _3"></span>是<span class="_ _3"></span>一<span class="_ _3"></span>种<span class="_ _3"></span>能<span class="_ _3"></span>提<span class="_ _3"></span>供<span class="_ _3"></span>高<span class="_ _3"></span>精<span class="_ _3"></span>度<span class="_ _3"></span>状<span class="_ _3"></span>态<span class="_ _3"></span>估<span class="_ _3"></span>计<span class="_ _3"></span>的<span class="_ _3"></span>方<span class="_ _3"></span>法<span class="_ _3"></span>。<span class="_ _3"></span>在<span class="_ _4"> </span><span class="ff1">Carsim<span class="_ _4"> </span></span>与</div><div class="t m0 x1 h2 y8 ff1 fs0 fc0 sc0 ls0 ws0">Simulink<span class="_ _0"> </span><span class="ff2">的联合仿真环境中,我们可以通过<span class="_ _0"> </span></span>UKF<span class="_ _0"> </span><span class="ff2">来估计车辆的<span class="_ _0"> </span></span>Vx<span class="ff2">、β、γ等关键参数。</span></div><div class="t m0 x1 h2 y9 ff2 fs0 fc0 sc0 ls0 ws0">二、<span class="ff1">UKF<span class="_ _0"> </span></span>技术详解</div><div class="t m0 x1 h2 ya ff1 fs0 fc0 sc0 ls0 ws0">UKF<span class="_"> </span><span class="ff2">是一种基<span class="_ _3"></span>于贝叶斯<span class="_ _5"></span>滤波理<span class="_ _5"></span>论的<span class="_ _5"></span>算法<span class="_ _5"></span>,其通<span class="_ _5"></span>过采<span class="_ _5"></span>用无<span class="_ _5"></span>迹变换<span class="_ _5"></span>(</span>UT<span class="_ _5"></span><span class="ff2">)来近<span class="_ _5"></span>似状<span class="_ _5"></span>态的<span class="_ _5"></span>后验概</span></div><div class="t m0 x1 h2 yb ff2 fs0 fc0 sc0 ls0 ws0">率密度函数。<span class="_ _6"></span>相比传统的卡尔曼滤波器,<span class="_ _6"></span><span class="ff1">UKF<span class="_ _0"> </span><span class="ff2">能够更好地处理非线性系统中的状态估计问题。</span></span></div><div class="t m0 x1 h2 yc ff2 fs0 fc0 sc0 ls0 ws0">在编程实现上,<span class="_ _2"></span><span class="ff1">UKF<span class="_ _0"> </span><span class="ff2">使用子函数形式,<span class="_ _7"></span>定义好状态方程和观测方程后,<span class="_ _7"></span>就可以方便地进行二</span></span></div><div class="t m0 x1 h2 yd ff2 fs0 fc0 sc0 ls0 ws0">次开发。</div><div class="t m0 x1 h2 ye ff2 fs0 fc0 sc0 ls0 ws0">三、<span class="ff1">Carsim<span class="_ _0"> </span></span>与<span class="_ _0"> </span><span class="ff1">Simulink<span class="_ _0"> </span></span>的联合仿真</div><div class="t m0 x1 h2 yf ff1 fs0 fc0 sc0 ls0 ws0">Carsim<span class="_ _8"> </span><span class="ff2">作<span class="_ _9"></span>为<span class="_ _9"></span>一<span class="_ _9"></span>款<span class="_ _9"></span>功<span class="_ _9"></span>能<span class="_ _9"></span>强<span class="_ _9"></span>大<span class="_ _9"></span>的<span class="_ _9"></span>车<span class="_ _9"></span>辆<span class="_ _9"></span>仿<span class="_ _9"></span>真<span class="_ _9"></span>软<span class="_ _9"></span>件<span class="_ _9"></span>,<span class="_ _9"></span>可<span class="_ _9"></span>以<span class="_ _9"></span>提<span class="_ _9"></span>供<span class="_ _9"></span>真<span class="_ _9"></span>实<span class="_ _9"></span>的<span class="_ _9"></span>车<span class="_ _9"></span>辆<span class="_ _9"></span>动<span class="_ _9"></span>力<span class="_ _9"></span>学<span class="_ _9"></span>模<span class="_ _9"></span>型<span class="_ _9"></span>。<span class="_ _9"></span>而</span></div><div class="t m0 x1 h2 y10 ff1 fs0 fc0 sc0 ls0 ws0">MATLAB/Simulink<span class="_ _0"> </span><span class="ff2">则为我们提供了一个强大的仿真平台,<span class="_ _1"></span>可以方便地实现各种控制算法的建</span></div><div class="t m0 x1 h2 y11 ff2 fs0 fc0 sc0 ls0 ws0">模和仿真。通过将<span class="_ _0"> </span><span class="ff1">Carsim<span class="_"> </span></span>与<span class="_ _0"> </span><span class="ff1">Simulink<span class="_ _0"> </span></span>进行联合仿真,我们可以更真实地模拟车辆在实际道</div><div class="t m0 x1 h2 y12 ff2 fs0 fc0 sc0 ls0 ws0">路上的行驶情况。</div><div class="t m0 x1 h2 y13 ff2 fs0 fc0 sc0 ls0 ws0">在联<span class="_ _5"></span>合<span class="_ _5"></span>仿真<span class="_ _5"></span>中<span class="_ _5"></span>,我<span class="_ _5"></span>们<span class="_ _5"></span>使用<span class="_ _4"> </span><span class="ff1">UKF<span class="_"> </span></span>作为状<span class="_ _5"></span>态<span class="_ _5"></span>观测<span class="_ _5"></span>器<span class="_ _5"></span>,通<span class="_ _5"></span>过<span class="_ _4"> </span><span class="ff1">Carsim<span class="_"> </span></span>提供的<span class="_ _5"></span>数<span class="_ _5"></span>据来<span class="_ _5"></span>估<span class="_ _5"></span>计车<span class="_ _5"></span>辆<span class="_ _5"></span>的<span class="_ _0"> </span><span class="ff1">Vx</span>、</div><div class="t m0 x1 h2 y14 ff2 fs0 fc0 sc0 ls0 ws0">β、γ等参数。由于<span class="_ _0"> </span><span class="ff1">Carsim<span class="_ _0"> </span></span>的模型具有较高的复杂性,因此与<span class="_ _0"> </span><span class="ff1">Simulink<span class="_ _0"> </span></span>联合估计的难度也相</div><div class="t m0 x1 h2 y15 ff2 fs0 fc0 sc0 ls0 ws0">对较高。<span class="_ _2"></span>然而,<span class="_ _2"></span>通过合理的模型简化、<span class="_ _2"></span>参数调整以及优化算法,<span class="_ _2"></span>我们可以实现高精度的状态</div><div class="t m0 x1 h2 y16 ff2 fs0 fc0 sc0 ls0 ws0">估计。</div><div class="t m0 x1 h2 y17 ff2 fs0 fc0 sc0 ls0 ws0">四、示例代码与效果展示</div><div class="t m0 x1 h2 y18 ff2 fs0 fc0 sc0 ls0 ws0">下面是一个简单的<span class="_ _0"> </span><span class="ff1">UKF<span class="_ _0"> </span></span>状态观测器的<span class="_ _0"> </span><span class="ff1">MATLAB<span class="_ _0"> </span></span>代码示例,带有详细的注释和说明文档:</div><div class="t m0 x1 h2 y19 ff1 fs0 fc0 sc0 ls0 ws0">```matlab</div><div class="t m0 x1 h2 y1a ff1 fs0 fc0 sc0 ls0 ws0">% <span class="_ _a"> </span><span class="ff2">定义状态方程和观测方程(此处省略具体实现)</span></div><div class="t m0 x1 h2 y1b ff1 fs0 fc0 sc0 ls0 ws0">% ...</div><div class="t m0 x1 h2 y1c ff1 fs0 fc0 sc0 ls0 ws0">% <span class="_ _a"> </span><span class="ff2">初始化<span class="_ _0"> </span></span>UKF<span class="_ _0"> </span><span class="ff2">参数和状态变量</span></div><div class="t m0 x1 h2 y1d ff1 fs0 fc0 sc0 ls0 ws0">% ...</div><div class="t m0 x1 h2 y1e ff1 fs0 fc0 sc0 ls0 ws0">% <span class="_ _a"> </span><span class="ff2">在每个仿真步长中更新<span class="_ _0"> </span></span>UKF<span class="_ _0"> </span><span class="ff2">状态估计值</span></div><div class="t m0 x1 h2 y1f ff1 fs0 fc0 sc0 ls0 ws0">for t = 1:simTime <span class="_ _b"> </span>% <span class="_ _a"> </span><span class="ff2">假设<span class="_ _0"> </span></span>simTime<span class="_ _a"> </span><span class="ff2">为仿真总时间</span></div></div><div class="pi" data-data='{"ctm":[1.611830,0.000000,0.000000,1.611830,0.000000,0.000000]}'></div></div>
100+评论
captcha