MATLAB拓扑MPEC双层规划算法:探索最优微网运营策略与电价耦合求解,MATLAB实现带拓扑MPEC双层规划:Lindistflow与微网优化在IEEE 33bus系统中的探索,MATLAB代码:
资源内容介绍
MATLAB拓扑MPEC双层规划算法:探索最优微网运营策略与电价耦合求解,MATLAB实现带拓扑MPEC双层规划:Lindistflow与微网优化在IEEE 33bus系统中的探索,MATLAB代码:全网唯一带拓扑MPEC,微网双层规划关键词:双层规划 MPEC VPP ADN lindistflow KKT参考文档:《Bi-Level Programming for Optimal Operation of an Active Distribution Network With Multiple Virtual Power Plants》2020 SCI一区 IEEE Transactions on Sustainable Energy, 半完美复现仿真平台:MATLAB YALMIP GUROBI CPLEX MOSEK主要内容: 1.半完美复现,没考虑Q,使用IEEE33 bus作为case,全网唯一带拓扑的MPEC;2.使用solvebilevel函数求解上下层KKT,同时求解出耦合电价以及释放功率3.上层为 Lindistflow,下层为三个微网,分别放置在33 <link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/css/base.min.css" rel="stylesheet"/><link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/css/fancy.min.css" rel="stylesheet"/><link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/90424616/2/raw.css" rel="stylesheet"/><div id="sidebar" style="display: none"><div id="outline"></div></div><div class="pf w0 h0" data-page-no="1" id="pf1"><div class="pc pc1 w0 h0"><img alt="" class="bi x0 y0 w1 h1" src="/image.php?url=https://csdnimg.cn/release/download_crawler_static/90424616/bg1.jpg"/><div class="t m0 x1 h2 y1 ff1 fs0 fc0 sc0 ls0 ws0">【技术博客文章:探索全网唯一带拓扑的<span class="_ _0"> </span><span class="ff2">MPEC<span class="_ _0"> </span></span>双层规划在微网中的应用】</div><div class="t m0 x1 h2 y2 ff1 fs0 fc0 sc0 ls0 ws0">各位技<span class="_ _1"></span>术爱好<span class="_ _1"></span>者们,<span class="_ _1"></span>今天我<span class="_ _1"></span>们要深<span class="_ _1"></span>入探讨<span class="_ _1"></span>的是一<span class="_ _1"></span>个颇为<span class="_ _1"></span>独特的<span class="_ _1"></span>课题<span class="ff2">——</span>全<span class="_ _1"></span>网唯一<span class="_ _1"></span>带拓扑<span class="_ _1"></span>的</div><div class="t m0 x1 h2 y3 ff2 fs0 fc0 sc0 ls0 ws0">MPEC<span class="_ _0"> </span><span class="ff1">双层规划在微网中的应用。让我们一起踏上这段奇妙的科技之旅吧!</span></div><div class="t m0 x1 h2 y4 ff1 fs0 fc0 sc0 ls0 ws0">一、半完美复现:揭开<span class="_ _0"> </span><span class="ff2">MPEC<span class="_ _0"> </span></span>的神秘面纱</div><div class="t m0 x1 h2 y5 ff1 fs0 fc0 sc0 ls0 ws0">在电力系统的研究中,<span class="ff2">MPEC</span>(数学规划中的数学模型)一直是一个备受关注的领域。而本</div><div class="t m0 x1 h2 y6 ff1 fs0 fc0 sc0 ls0 ws0">次我们面临<span class="_ _1"></span>的挑战,是<span class="_ _1"></span>在没有考虑<span class="_ _2"> </span><span class="ff2">Q<span class="_"> </span></span>的情况下,使用<span class="_ _0"> </span><span class="ff2">IEEE33 bus<span class="_"> </span></span>作为案例<span class="_ _1"></span>,构建全网<span class="_ _1"></span>唯一</div><div class="t m0 x1 h2 y7 ff1 fs0 fc0 sc0 ls0 ws0">带拓扑的<span class="_ _0"> </span><span class="ff2">MPEC<span class="_ _0"> </span></span>模型。<span class="_ _3"></span>这无疑是一个极具挑战性的任务,<span class="_ _3"></span>但正是这种挑战,<span class="_ _3"></span>让我们有机会一</div><div class="t m0 x1 h2 y8 ff1 fs0 fc0 sc0 ls0 ws0">窥<span class="_ _0"> </span><span class="ff2">MPEC<span class="_ _0"> </span></span>的奥秘。</div><div class="t m0 x1 h2 y9 ff1 fs0 fc0 sc0 ls0 ws0">二、双层规划的魅力:上下层<span class="_ _0"> </span><span class="ff2">KKT<span class="_ _0"> </span></span>的求解之旅</div><div class="t m0 x1 h2 ya ff1 fs0 fc0 sc0 ls0 ws0">当我们提到双层<span class="_ _1"></span>规划,不禁让<span class="_ _1"></span>人想起那复杂的<span class="_ _1"></span>上下层关系。<span class="_ _1"></span>而本次我们采用<span class="_ _2"> </span><span class="ff2">solvebilevel<span class="_ _0"> </span></span>函</div><div class="t m0 x1 h2 yb ff1 fs0 fc0 sc0 ls0 ws0">数来求<span class="_ _1"></span>解上<span class="_ _1"></span>下层<span class="_ _1"></span>的<span class="_ _0"> </span><span class="ff2">KKT<span class="_"> </span></span>条件<span class="_ _1"></span>。这<span class="_ _1"></span>不仅<span class="_ _1"></span>是一个<span class="_ _1"></span>技术<span class="_ _1"></span>上的<span class="_ _1"></span>突破<span class="_ _1"></span>,更<span class="_ _1"></span>是对<span class="_ _1"></span>双层规<span class="_ _1"></span>划理<span class="_ _1"></span>论的<span class="_ _1"></span>一次<span class="_ _1"></span>实</div><div class="t m0 x1 h2 yc ff1 fs0 fc0 sc0 ls0 ws0">践。<span class="_ _3"></span>在求解的过程中,<span class="_ _4"></span>我们能够同时得到耦合电价以及释放功率的信息,<span class="_ _3"></span>为后续的分析和优</div><div class="t m0 x1 h2 yd ff1 fs0 fc0 sc0 ls0 ws0">化提供了坚实的基础。</div><div class="t m0 x1 h2 ye ff1 fs0 fc0 sc0 ls0 ws0">三、<span class="ff2">Lindistflow<span class="_ _0"> </span></span>与微网的奇妙组合</div><div class="t m0 x1 h2 yf ff1 fs0 fc0 sc0 ls0 ws0">在我们的模型中,<span class="_ _3"></span>上层采用的是<span class="_ _0"> </span><span class="ff2">Lindistflow<span class="_ _0"> </span></span>算法,<span class="_ _3"></span>而下层则是由三个微网构成,<span class="_ _3"></span>分别放置在</div><div class="t m0 x1 h2 y10 ff2 fs0 fc0 sc0 ls0 ws0">33bus<span class="_ _0"> </span><span class="ff1">中的第<span class="_ _0"> </span></span>8<span class="ff1">、<span class="_ _5"></span><span class="ff2">15<span class="ff1">、<span class="_ _5"></span><span class="ff2">28<span class="_"> </span><span class="ff1">节点。<span class="_ _4"></span>这样的组合带来了许多新的可能性,<span class="_ _5"></span>让微网系统变得更加智</span></span></span></span></span></div><div class="t m0 x1 h2 y11 ff1 fs0 fc0 sc0 ls0 ws0">能和高效。</div><div class="t m0 x1 h2 y12 ff1 fs0 fc0 sc0 ls0 ws0">四、仿真平台的强大支持</div></div><div class="pi" data-data='{"ctm":[1.611830,0.000000,0.000000,1.611830,0.000000,0.000000]}'></div></div>