YOLO-World.zip
大小:6.34MB
价格:28积分
下载量:0
评分:
5.0
上传者:唯你所有
更新日期:2025-09-22

yolo-world官方代码,预测 + 训练

资源文件列表(大概)

文件名
大小
YOLO-World/
-
YOLO-World/demo/
-
YOLO-World/tools/
-
YOLO-World/.DS_Store
6KB
__MACOSX/YOLO-World/._.DS_Store
120B
YOLO-World/LICENSE
68.65KB
__MACOSX/YOLO-World/._LICENSE
224B
YOLO-World/Dockerfile
1.18KB
YOLO-World/deploy/
-
YOLO-World/pyproject.toml
1.48KB
YOLO-World/requirements/
-
YOLO-World/docs/
-
YOLO-World/.gitmodules
108B
YOLO-World/README.md
20.11KB
YOLO-World/.dockerignore
15B
YOLO-World/third_party/
-
YOLO-World/.gitignore
1.37KB
YOLO-World/configs/
-
YOLO-World/.gitattributes
696B
YOLO-World/yolo_world/
-
YOLO-World/environment-fromT.txt
7.99KB
__MACOSX/YOLO-World/._environment-fromT.txt
176B
YOLO-World/.git/
-
YOLO-World/data/
-
YOLO-World/assets/
-
YOLO-World/.idea/
-
__MACOSX/YOLO-World/._.idea
163B
YOLO-World/demo/simple_demo.py
2.27KB
YOLO-World/demo/image_demo.py
7.64KB
YOLO-World/demo/image_prompt_demo.py
12.07KB
YOLO-World/demo/sample_images/
-
YOLO-World/demo/README.md
2.11KB
YOLO-World/demo/video_demo.py
3.64KB
YOLO-World/demo/gradio_demo.py
9.2KB
YOLO-World/demo/inference.ipynb
1008.85KB
YOLO-World/tools/reparameterize_yoloworld.py
4.55KB
YOLO-World/tools/dist_train.sh
449B
YOLO-World/tools/generate_image_prompts.py
2.2KB
YOLO-World/tools/dist_test.sh
479B
YOLO-World/tools/test.py
5.32KB
YOLO-World/tools/generate_text_prompts.py
1.15KB
YOLO-World/tools/train.py
4.12KB
YOLO-World/deploy/__init__.py
-
YOLO-World/deploy/onnx_demo.py
7.56KB
YOLO-World/deploy/easydeploy/
-
YOLO-World/deploy/export_onnx.py
7.13KB
YOLO-World/deploy/tflite_demo.py
8.15KB
YOLO-World/requirements/demo_requirements.txt
26B
__MACOSX/YOLO-World/requirements/._demo_requirements.txt
280B
YOLO-World/requirements/onnx_requirements.txt
36B
__MACOSX/YOLO-World/requirements/._onnx_requirements.txt
280B
YOLO-World/requirements/basic_requirements.txt
161B
__MACOSX/YOLO-World/requirements/._basic_requirements.txt
323B
YOLO-World/docs/tflite_deploy.md
2.42KB
YOLO-World/docs/data.md
5.16KB
YOLO-World/docs/faq.md
512B
YOLO-World/docs/deploy.md
2.2KB
YOLO-World/docs/reparameterize.md
3.01KB
YOLO-World/docs/finetuning.md
3.51KB
YOLO-World/docs/installation.md
1.39KB
YOLO-World/docs/updates.md
731B
YOLO-World/docs/prompt_yolo_world.md
3.29KB
YOLO-World/third_party/mmyolo/
-
YOLO-World/configs/finetune_coco/
-
YOLO-World/configs/segmentation/
-
YOLO-World/configs/image_prompts/
-
YOLO-World/configs/pretrain/
-
YOLO-World/configs/pretrain_v1/
-
YOLO-World/configs/prompt_tuning_coco/
-
YOLO-World/yolo_world/version.py
744B
YOLO-World/yolo_world/datasets/
-
YOLO-World/yolo_world/__init__.py
342B
YOLO-World/yolo_world/models/
-
YOLO-World/yolo_world/engine/
-
YOLO-World/.git/config
313B
YOLO-World/.git/objects/
-
YOLO-World/.git/HEAD
23B
YOLO-World/.git/info/
-
YOLO-World/.git/logs/
-
YOLO-World/.git/description
73B
YOLO-World/.git/hooks/
-
YOLO-World/.git/refs/
-
YOLO-World/.git/index
19.98KB
YOLO-World/.git/packed-refs
181B
YOLO-World/data/texts/
-
YOLO-World/assets/reparameterize.png
62.77KB
YOLO-World/assets/finetune_yoloworld.png
466.43KB
YOLO-World/assets/yolo_arch.png
297.76KB
YOLO-World/assets/yolo_logo.png
99.93KB
YOLO-World/.idea/inspectionProfiles/
-
__MACOSX/YOLO-World/.idea/._inspectionProfiles
163B
YOLO-World/.idea/vcs.xml
167B
__MACOSX/YOLO-World/.idea/._vcs.xml
163B
YOLO-World/.idea/.gitignore
176B
__MACOSX/YOLO-World/.idea/._.gitignore
163B
YOLO-World/.idea/workspace.xml
4.71KB
__MACOSX/YOLO-World/.idea/._workspace.xml
163B
YOLO-World/.idea/YOLO-World.iml
470B
__MACOSX/YOLO-World/.idea/._YOLO-World.iml
163B
YOLO-World/.idea/modules.xml
272B
__MACOSX/YOLO-World/.idea/._modules.xml
163B
YOLO-World/.idea/misc.xml
264B
__MACOSX/YOLO-World/.idea/._misc.xml
163B
YOLO-World/demo/sample_images/zidane.jpg
164.99KB
YOLO-World/demo/sample_images/bus.jpg
476.01KB
YOLO-World/deploy/easydeploy/bbox_code/
-
YOLO-World/deploy/easydeploy/tools/
-
YOLO-World/deploy/easydeploy/docs/
-
YOLO-World/deploy/easydeploy/README_zh-CN.md
406B
YOLO-World/deploy/easydeploy/README.md
464B
YOLO-World/deploy/easydeploy/onnx_demo.py
-
YOLO-World/deploy/easydeploy/examples/
-
YOLO-World/deploy/easydeploy/model/
-
YOLO-World/deploy/easydeploy/nms/
-
YOLO-World/deploy/easydeploy/deepstream/
-
YOLO-World/deploy/easydeploy/backbone/
-
YOLO-World/configs/finetune_coco/yolo_world_v2_l_efficient_neck_2e-4_80e_8gpus_mask-refine_finetune_coco.py
6.03KB
YOLO-World/configs/finetune_coco/yolo_world_l_efficient_neck_2e-4_80e_8gpus_mask-refine_finetune_coco.py
6.36KB
YOLO-World/configs/finetune_coco/yolo_world_v2_l_vlpan_bn_2e-4_80e_8gpus_mask-refine_finetune_coco.py
6.03KB
YOLO-World/configs/finetune_coco/yolo_world_v2_s_vlpan_bn_2e-4_80e_8gpus_mask-refine_finetune_coco.py
6.05KB
YOLO-World/configs/finetune_coco/yolo_world_v2_xl_vlpan_bn_2e-4_80e_8gpus_mask-refine_finetune_coco.py
7.18KB
YOLO-World/configs/finetune_coco/README.md
3.7KB
YOLO-World/configs/finetune_coco/yolo_world_v2_s_rep_vlpan_bn_2e-4_80e_8gpus_mask-refine_finetune_coco.py
6KB
YOLO-World/configs/finetune_coco/yolo_world_v2_l_vlpan_bn_sgd_1e-3_80e_8gpus_mask-refine_finetune_coco.py
6.8KB
YOLO-World/configs/finetune_coco/yolo_world_v2_m_vlpan_bn_2e-4_80e_8gpus_mask-refine_finetune_coco.py
6.02KB
YOLO-World/configs/finetune_coco/yolo_world_v2_s_bn_2e-4_80e_8gpus_mask-refine_finetune_coco.py
5.99KB
YOLO-World/configs/finetune_coco/yolo_world_v2_l_vlpan_bn_sgd_1e-3_40e_8gpus_finetune_coco.py
6.64KB
YOLO-World/configs/finetune_coco/yolo_world_v2_x_vlpan_bn_2e-4_80e_8gpus_mask-refine_finetune_coco.py
6.04KB
YOLO-World/configs/finetune_coco/yolo_world_l_dual_vlpan_2e-4_80e_8gpus_finetune_coco.py
5.89KB
YOLO-World/configs/finetune_coco/yolo_world_l_dual_vlpan_2e-4_80e_8gpus_mask-refine_finetune_coco.py
6.05KB
YOLO-World/configs/segmentation/yolo_world_seg_l_dual_vlpan_2e-4_80e_8gpus_allmodules_finetune_lvis.py
8.51KB
YOLO-World/configs/segmentation/yolo_world_seg_l_dual_vlpan_2e-4_80e_8gpus_seghead_finetune_lvis.py
9.06KB
YOLO-World/configs/segmentation/yolo_world_v2_seg_l_vlpan_bn_2e-4_80e_8gpus_seghead_finetune_lvis.py
9.08KB
YOLO-World/configs/segmentation/README.md
2.97KB
YOLO-World/configs/segmentation/yolo_world_seg_m_dual_vlpan_2e-4_80e_8gpus_seghead_finetune_lvis.py
9.06KB
YOLO-World/configs/segmentation/yolo_world_seg_m_dual_vlpan_2e-4_80e_8gpus_allmodules_finetune_lvis.py
8.41KB
YOLO-World/configs/segmentation/yolo_world_v2_seg_m_vlpan_bn_2e-4_80e_8gpus_seghead_finetune_lvis.py
9.08KB
YOLO-World/configs/image_prompts/yolo_world_v2_l_vlpan_bn_2e-4_80e_8gpus_image_prompt_demo.py
5.35KB
YOLO-World/configs/pretrain/yolo_world_v2_m_vlpan_bn_noeinsum_2e-3_100e_4x8gpus_obj365v1_goldg_train_lvis_minival.py
6.86KB
YOLO-World/configs/pretrain/yolo_world_v2_l_vlpan_bn_2e-3_100e_4x8gpus_obj365v1_goldg_train_lvis_val.py
6.72KB
YOLO-World/configs/pretrain/yolo_world_v2_m_vlpan_bn_2e-3_100e_4x8gpus_obj365v1_goldg_train_lvis_minival.py
6.74KB
YOLO-World/configs/pretrain/yolo_world_v2_l_vlpan_bn_2e-3_100e_4x8gpus_obj365v1_goldg_train_1280ft_lvis_minival.py
7.58KB
YOLO-World/configs/pretrain/yolo_world_v2_l_clip_large_vlpan_bn_2e-3_100e_4x8gpus_obj365v1_goldg_train_lvis_minival.py
6.76KB
YOLO-World/configs/pretrain/yolo_world_v2_xl_vlpan_bn_2e-3_100e_4x8gpus_obj365v1_goldg_train_lvis_minival.py
7.07KB
YOLO-World/configs/pretrain/yolo_world_v2_x_vlpan_bn_2e-3_100e_4x8gpus_obj365v1_goldg_train_1280ft_lvis_minival.py
7.5KB
YOLO-World/configs/pretrain/yolo_world_v2_x_vlpan_bn_2e-3_100e_4x8gpus_obj365v1_goldg_train_lvis_minival.py
6.76KB
YOLO-World/configs/pretrain/yolo_world_v2_m_vlpan_bn_2e-3_100e_4x8gpus_obj365v1_goldg_train_1280ft_lvis_minival.py
7.49KB
YOLO-World/configs/pretrain/yolo_world_v2_s_vlpan_bn_2e-3_100e_4x8gpus_obj365v1_goldg_train_1280ft_lvis_minival.py
7.38KB
YOLO-World/configs/pretrain/yolo_world_v2_l_vlpan_bn_2e-3_100e_4x8gpus_obj365v1_goldg_train_lvis_minival.py
6.76KB
YOLO-World/configs/pretrain/yolo_world_v2_x_vlpan_bn_2e-3_100e_4x8gpus_obj365v1_goldg_cc3mlite_train_lvis_minival.py
7.24KB
YOLO-World/configs/pretrain/yolo_world_v2_l_clip_large_vlpan_bn_2e-3_100e_4x8gpus_obj365v1_goldg_train_800ft_lvis_minival.py
7.49KB
YOLO-World/configs/pretrain/yolo_world_v2_s_vlpan_bn_2e-3_100e_4x8gpus_obj365v1_goldg_train_lvis_minival.py
6.66KB
YOLO-World/configs/pretrain_v1/yolo_world_x_dual_vlpan_l2norm_2e-3_100e_4x8gpus_obj365v1_goldg_train_lvis_minival.py
6.78KB
YOLO-World/configs/pretrain_v1/yolo_world_l_dual_vlpan_l2norm_2e-3_100e_4x8gpus_obj365v1_goldg_train_lvis_val.py
6.73KB
YOLO-World/configs/pretrain_v1/yolo_world_m_dual_vlpan_l2norm_2e-3_100e_4x8gpus_obj365v1_goldg_train_lvis_minival.py
6.78KB
YOLO-World/configs/pretrain_v1/yolo_world_s_dual_vlpan_l2norm_2e-3_100e_4x8gpus_obj365v1_goldg_train_lvis_minival.py
6.78KB
YOLO-World/configs/pretrain_v1/yolo_world_l_dual_vlpan_l2norm_2e-3_100e_4x8gpus_obj365v1_goldg_train_lvis_minival.py
6.78KB
YOLO-World/configs/pretrain_v1/README.md
3.63KB
YOLO-World/configs/prompt_tuning_coco/READEME.md
534B
YOLO-World/configs/prompt_tuning_coco/yolo_world_v2_l_vlpan_bn_sgd_1e-3_80e_8gpus_all_finetuning_coco.py
4.58KB
YOLO-World/configs/prompt_tuning_coco/yolo_world_v2_l_vlpan_bn_2e-4_80e_8gpus_prompt_tuning_coco.py
5.11KB
YOLO-World/configs/prompt_tuning_coco/yolo_world_v2_l_vlpan_bn_2e-4_80e_8gpus_mask-refine_prompt_tuning_coco.py
6.82KB
YOLO-World/yolo_world/datasets/yolov5_obj365v1.py
508B
YOLO-World/yolo_world/datasets/yolov5_cc3m_grounding.py
7.05KB
YOLO-World/yolo_world/datasets/mm_dataset.py
3.99KB
YOLO-World/yolo_world/datasets/__init__.py
786B
YOLO-World/yolo_world/datasets/transformers/
-
YOLO-World/yolo_world/datasets/utils.py
2.1KB
YOLO-World/yolo_world/datasets/yolov5_lvis.py
491B
YOLO-World/yolo_world/datasets/yolov5_v3det.py
3.75KB
YOLO-World/yolo_world/datasets/yolov5_mixed_grounding.py
7.26KB
YOLO-World/yolo_world/datasets/yolov5_obj365v2.py
508B
YOLO-World/yolo_world/models/losses/
-
YOLO-World/yolo_world/models/dense_heads/
-
YOLO-World/yolo_world/models/layers/
-
YOLO-World/yolo_world/models/necks/
-
YOLO-World/yolo_world/models/__init__.py
314B
YOLO-World/yolo_world/models/data_preprocessors/
-
YOLO-World/yolo_world/models/backbones/
-
YOLO-World/yolo_world/models/detectors/
-
YOLO-World/yolo_world/models/assigner/
-
YOLO-World/yolo_world/engine/__init__.py
84B
YOLO-World/yolo_world/engine/optimizers/
-
YOLO-World/.git/objects/pack/
-
YOLO-World/.git/objects/info/
-
YOLO-World/.git/info/exclude
240B
YOLO-World/.git/logs/HEAD
183B
YOLO-World/.git/logs/refs/
-
YOLO-World/.git/hooks/commit-msg.sample
896B
YOLO-World/.git/hooks/pre-rebase.sample
4.78KB
YOLO-World/.git/hooks/pre-commit.sample
1.6KB
YOLO-World/.git/hooks/applypatch-msg.sample
478B
YOLO-World/.git/hooks/fsmonitor-watchman.sample
4.62KB
YOLO-World/.git/hooks/pre-receive.sample
544B
YOLO-World/.git/hooks/prepare-commit-msg.sample
1.46KB
YOLO-World/.git/hooks/post-update.sample
189B
YOLO-World/.git/hooks/pre-merge-commit.sample
416B
YOLO-World/.git/hooks/pre-applypatch.sample
424B
YOLO-World/.git/hooks/pre-push.sample
1.34KB
YOLO-World/.git/hooks/update.sample
3.56KB
YOLO-World/.git/hooks/push-to-checkout.sample
2.72KB
YOLO-World/.git/refs/heads/
-
YOLO-World/.git/refs/tags/
-
YOLO-World/.git/refs/remotes/
-
YOLO-World/data/texts/coco_class_texts.json
1022B
YOLO-World/data/texts/lvis_v1_base_class_captions.json
20.13KB
YOLO-World/data/texts/obj365v1_class_texts.json
4.92KB
YOLO-World/data/texts/lvis_v1_class_texts.json
27.51KB
YOLO-World/.idea/inspectionProfiles/profiles_settings.xml
174B
__MACOSX/YOLO-World/.idea/inspectionProfiles/._profiles_settings.xml
163B
YOLO-World/.idea/inspectionProfiles/Project_Default.xml
658B
__MACOSX/YOLO-World/.idea/inspectionProfiles/._Project_Default.xml
163B
YOLO-World/deploy/easydeploy/bbox_code/bbox_coder.py
1.57KB
YOLO-World/deploy/easydeploy/bbox_code/__init__.py
240B
YOLO-World/deploy/easydeploy/tools/build_engine.py
4.89KB
YOLO-World/deploy/easydeploy/tools/image-demo.py
4.84KB
YOLO-World/deploy/easydeploy/tools/export_onnx.py
5.27KB
YOLO-World/deploy/easydeploy/docs/model_convert.md
6.28KB
YOLO-World/deploy/easydeploy/examples/config.py
3.17KB
YOLO-World/deploy/easydeploy/examples/requirements.txt
36B
__MACOSX/YOLO-World/deploy/easydeploy/examples/._requirements.txt
224B
YOLO-World/deploy/easydeploy/examples/preprocess.py
2.08KB
YOLO-World/deploy/easydeploy/examples/main_onnxruntime.py
3.65KB
YOLO-World/deploy/easydeploy/examples/cv2_nms.py
1.2KB
YOLO-World/deploy/easydeploy/examples/numpy_coder.py
10.8KB
YOLO-World/deploy/easydeploy/model/backendwrapper.py
6.72KB
YOLO-World/deploy/easydeploy/model/backend.py
493B
YOLO-World/deploy/easydeploy/model/__init__.py
237B
YOLO-World/deploy/easydeploy/model/model.py
8.72KB
YOLO-World/deploy/easydeploy/nms/trt_nms.py
7.86KB
YOLO-World/deploy/easydeploy/nms/__init__.py
182B
YOLO-World/deploy/easydeploy/nms/ort_nms.py
8.54KB
YOLO-World/deploy/easydeploy/deepstream/CMakeLists.txt
1.06KB
__MACOSX/YOLO-World/deploy/easydeploy/deepstream/._CMakeLists.txt
224B
YOLO-World/deploy/easydeploy/deepstream/deepstream_app_config.txt
870B
__MACOSX/YOLO-World/deploy/easydeploy/deepstream/._deepstream_app_config.txt
224B
YOLO-World/deploy/easydeploy/deepstream/custom_mmyolo_bbox_parser/
-
YOLO-World/deploy/easydeploy/deepstream/README_zh-CN.md
1.59KB
YOLO-World/deploy/easydeploy/deepstream/coco_labels.txt
625B
__MACOSX/YOLO-World/deploy/easydeploy/deepstream/._coco_labels.txt
224B
YOLO-World/deploy/easydeploy/deepstream/README.md
1.88KB
YOLO-World/deploy/easydeploy/deepstream/configs/
-
YOLO-World/deploy/easydeploy/backbone/__init__.py
199B
YOLO-World/deploy/easydeploy/backbone/common.py
444B
YOLO-World/deploy/easydeploy/backbone/focus.py
2.77KB
YOLO-World/yolo_world/datasets/transformers/mm_mix_img_transforms.py
46.38KB
YOLO-World/yolo_world/datasets/transformers/__init__.py
383B
YOLO-World/yolo_world/datasets/transformers/mm_transforms.py
4.57KB
YOLO-World/yolo_world/models/losses/__init__.py
113B
YOLO-World/yolo_world/models/losses/dynamic_loss.py
1.26KB
YOLO-World/yolo_world/models/dense_heads/yolo_world_seg_head.py
24.07KB
YOLO-World/yolo_world/models/dense_heads/__init__.py
346B
YOLO-World/yolo_world/models/dense_heads/yolo_world_head.py
29.37KB
YOLO-World/yolo_world/models/layers/yolo_bricks.py
24.13KB
YOLO-World/yolo_world/models/layers/__init__.py
585B
YOLO-World/yolo_world/models/necks/yolo_world_pafpn.py
9.61KB
YOLO-World/yolo_world/models/necks/__init__.py
167B
YOLO-World/yolo_world/models/data_preprocessors/__init__.py
146B
YOLO-World/yolo_world/models/data_preprocessors/data_preprocessor.py
2.28KB
YOLO-World/yolo_world/models/backbones/__init__.py
458B
YOLO-World/yolo_world/models/backbones/mm_backbone.py
8.26KB
YOLO-World/yolo_world/models/detectors/__init__.py
256B
YOLO-World/yolo_world/models/detectors/yolo_world_image.py
11.02KB
YOLO-World/yolo_world/models/detectors/yolo_world.py
9.04KB
YOLO-World/yolo_world/models/assigner/task_aligned_assigner.py
4.28KB
YOLO-World/yolo_world/models/assigner/__init__.py
91B
YOLO-World/yolo_world/engine/optimizers/__init__.py
161B
YOLO-World/yolo_world/engine/optimizers/yolow_v5_optim_constructor.py
8.45KB
YOLO-World/.git/objects/pack/pack-020ae3c8b9454f103737f1162819ba569fe292d4.idx
32.44KB
YOLO-World/.git/objects/pack/pack-020ae3c8b9454f103737f1162819ba569fe292d4.pack
3.9MB
YOLO-World/.git/logs/refs/heads/
-
YOLO-World/.git/logs/refs/remotes/
-
YOLO-World/.git/refs/heads/master
41B
YOLO-World/.git/refs/remotes/origin/
-
YOLO-World/deploy/easydeploy/deepstream/custom_mmyolo_bbox_parser/nvdsparsebbox_mmyolo.cpp
3.63KB
YOLO-World/deploy/easydeploy/deepstream/configs/config_infer_rtmdet.txt
479B
__MACOSX/YOLO-World/deploy/easydeploy/deepstream/configs/._config_infer_rtmdet.txt
224B
YOLO-World/deploy/easydeploy/deepstream/configs/config_infer_yolov8.txt
453B
__MACOSX/YOLO-World/deploy/easydeploy/deepstream/configs/._config_infer_yolov8.txt
224B
YOLO-World/deploy/easydeploy/deepstream/configs/config_infer_yolov5.txt
453B
__MACOSX/YOLO-World/deploy/easydeploy/deepstream/configs/._config_infer_yolov5.txt
224B
YOLO-World/.git/logs/refs/heads/master
183B
YOLO-World/.git/logs/refs/remotes/origin/
-
YOLO-World/.git/refs/remotes/origin/HEAD
32B
YOLO-World/.git/logs/refs/remotes/origin/HEAD
183B

资源内容介绍

YOLO(You Only Look Once)是一种在计算机视觉和机器学习领域广受欢迎的目标检测系统。YOLO模型以其高效性、速度和准确性在实时目标检测任务中表现突出,被广泛应用于自动驾驶、监控系统、视频分析等领域。YOLO的核心思想是在单一神经网络中直接预测边界框和概率,这与传统的目标检测方法不同,后者通常采用多步骤流程,例如选择性搜索选取候选区域,再对这些区域进行分类和边界框回归。YOLO模型的一个显著特点是它在检测速度和准确率之间的出色权衡。与基于区域的方法相比,YOLO在处理图像时速度更快,因为它只需要一个单一的神经网络评估,而不需要通过复杂的管道。这使得YOLO非常适合于对实时性要求高的应用。此外,YOLO对图像中的目标位置、大小和外观特征进行联合推理,从而提供更加精确的检测结果。YOLO模型自2015年首次提出以来,已经发展出多个版本,如YOLOv2、YOLOv3、YOLOv4,以及YOLOv5和最新的YOLOv7,每一个新版本都在前一版本的基础上进行了改进,增强了模型的性能。改进的方面包括但不限于网络结构的创新、锚框策略的优化、损失函数的调整、数据增强技术的使用等。每一代YOLO模型的更新都进一步提高了模型在各类数据集上的检测精度,同时也在不断减少对计算资源的需求,使得YOLO能够运行在更多类型的设备上。YOLO官方代码库通常包含用于训练模型的完整流程和用于预测的代码。这意味着开发者可以直接使用这些代码来训练自己的目标检测模型,或者用已经训练好的模型进行目标检测。官方代码库通常支持多种后端,如Darknet、PyTorch、TensorFlow等,为不同背景的开发者提供了灵活性。同时,代码库中还包含数据预处理、模型配置、训练脚本、评估脚本、预测脚本和可视化工具等,构成了一个完整的生态系统。从文件名称列表中我们仅看到了"YOLO-World",这暗示该压缩包可能包含与YOLO相关的代码、文档和可能的模型文件。开发者通过这些资源可以深入了解YOLO模型的工作原理,也可以根据自己的需求进行模型的微调或者应用开发。YOLO社区提供了大量的预训练模型和开源资源,极大促进了目标检测技术在各个领域的应用。对于希望利用YOLO进行目标检测研究或者应用开发的研究者和工程师来说,官方代码库是一个宝贵的资源。它不仅提供了一个强大的目标检测框架,还通过开放的代码和活跃的社区支持,鼓励了技术创新和知识分享。通过阅读和使用官方代码,开发者可以更快地融入这一领域的最新进展,为自己的项目带来最先进的技术解决方案。
<div align="center"><img src="./assets/yolo_logo.png"><br><a href="https://scholar.google.com/citations?hl=zh-CN&user=PH8rJHYAAAAJ">Tianheng Cheng</a><sup><span>2,3,*</span></sup>, <a href="https://linsong.info/">Lin Song</a><sup><span>1,📧,*</span></sup>,<a href="https://yxgeee.github.io/">Yixiao Ge</a><sup><span>1,🌟,2</span></sup>,<a href="http://eic.hust.edu.cn/professor/liuwenyu/"> Wenyu Liu</a><sup><span>3</span></sup>,<a href="https://xwcv.github.io/">Xinggang Wang</a><sup><span>3,📧</span></sup>,<a href="https://scholar.google.com/citations?user=4oXBp9UAAAAJ&hl=en">Ying Shan</a><sup><span>1,2</span></sup></br>\* Equal contribution 🌟 Project lead 📧 Corresponding author<sup>1</sup> Tencent AI Lab, <sup>2</sup> ARC Lab, Tencent PCG<sup>3</sup> Huazhong University of Science and Technology<br><div>[![arxiv paper](https://img.shields.io/badge/Project-Page-green)](https://wondervictor.github.io/)[![arxiv paper](https://img.shields.io/badge/arXiv-Paper-red)](https://arxiv.org/abs/2401.17270)<a href="https://colab.research.google.com/github/AILab-CVC/YOLO-World/blob/master/inference.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a>[![demo](https://img.shields.io/badge/🤗HugginngFace-Spaces-orange)](https://huggingface.co/spaces/stevengrove/YOLO-World)[![Replicate](https://replicate.com/zsxkib/yolo-world/badge)](https://replicate.com/zsxkib/yolo-world)[![hfpaper](https://img.shields.io/badge/🤗HugginngFace-Paper-yellow)](https://huggingface.co/papers/2401.17270)[![license](https://img.shields.io/badge/License-GPLv3.0-blue)](LICENSE)[![yoloworldseg](https://img.shields.io/badge/YOLOWorldxEfficientSAM-🤗Spaces-orange)](https://huggingface.co/spaces/SkalskiP/YOLO-World)[![yologuide](https://img.shields.io/badge/📖Notebook-roboflow-purple)](https://supervision.roboflow.com/develop/notebooks/zero-shot-object-detection-with-yolo-world)[![deploy](https://media.roboflow.com/deploy.svg)](https://inference.roboflow.com/foundation/yolo_world/)</div></div>## Notice**YOLO-World is still under active development!**We recommend that everyone **use English to communicate on issues**, as this helps developers from around the world discuss, share experiences, and answer questions together.For business licensing and other related inquiries, don't hesitate to contact `yixiaoge@tencent.com`.## 🔥 Updates `[2024-11-5]`: We update the `YOLO-World-Image` and you can try it at HuggingFace [YOLO-World-Image (Preview Version)](https://huggingface.co/spaces/wondervictor/YOLO-World-Image). It's a *preview* version and we are still improving it! Detailed documents about training and few-shot inference are coming soon.\`[2024-7-8]`: YOLO-World now has been integrated into [ComfyUI](https://github.com/StevenGrove/ComfyUI-YOLOWorld)! Come and try adding YOLO-World to your workflow now! You can access it at [StevenGrove/ComfyUI-YOLOWorld](https://github.com/StevenGrove/ComfyUI-YOLOWorld)! `[2024-5-18]:` YOLO-World models have been [integrated with the FiftyOne computer vision toolkit](https://docs.voxel51.com/integrations/ultralytics.html#open-vocabulary-detection) for streamlined open-vocabulary inference across image and video datasets. `[2024-5-16]:` Hey guys! Long time no see! This update contains (1) [fine-tuning guide](https://github.com/AILab-CVC/YOLO-World?#highlights--introduction) and (2) [TFLite Export](./docs/tflite_deploy.md) with INT8 Quantization. `[2024-5-9]:` This update contains the real [`reparameterization`](./docs/reparameterize.md) 🪄, and it's better for fine-tuning on custom datasets and improves the training/inference efficiency 🚀! `[2024-4-28]:` Long time no see! This update contains bugfixs and improvements: (1) ONNX demo; (2) image demo (support tensor input); (2) new pre-trained models; (3) image prompts; (4) simple version for fine-tuning / deployment; (5) guide for installation (include a `requirements.txt`). `[2024-3-28]:` We provide: (1) more high-resolution pre-trained models (e.g., S, M, X) ([#142](https://github.com/AILab-CVC/YOLO-World/issues/142)); (2) pre-trained models with CLIP-Large text encoders. Most importantly, we preliminarily fix the **fine-tuning without `mask-refine`** and explore a new fine-tuning setting ([#160](https://github.com/AILab-CVC/YOLO-World/issues/160),[#76](https://github.com/AILab-CVC/YOLO-World/issues/76)). In addition, fine-tuning YOLO-World with `mask-refine` also obtains significant improvements, check more details in [configs/finetune_coco](./configs/finetune_coco/). `[2024-3-16]:` We fix the bugs about the demo ([#110](https://github.com/AILab-CVC/YOLO-World/issues/110),[#94](https://github.com/AILab-CVC/YOLO-World/issues/94),[#129](https://github.com/AILab-CVC/YOLO-World/issues/129), [#125](https://github.com/AILab-CVC/YOLO-World/issues/125)) with visualizations of segmentation masks, and release [**YOLO-World with Embeddings**](./docs/prompt_yolo_world.md), which supports prompt tuning, text prompts and image prompts. `[2024-3-3]:` We add the **high-resolution YOLO-World**, which supports `1280x1280` resolution with higher accuracy and better performance for small objects! `[2024-2-29]:` We release the newest version of [ **YOLO-World-v2**](./docs/updates.md) with higher accuracy and faster speed! We hope the community can join us to improve YOLO-World! `[2024-2-28]:` Excited to announce that YOLO-World has been accepted by **CVPR 2024**! We're continuing to make YOLO-World faster and stronger, as well as making it better to use for all. `[2024-2-22]:` We sincerely thank [RoboFlow](https://roboflow.com/) and [@Skalskip92](https://twitter.com/skalskip92) for the [**Video Guide**](https://www.youtube.com/watch?v=X7gKBGVz4vs) about YOLO-World, nice work! `[2024-2-18]:` We thank [@Skalskip92](https://twitter.com/skalskip92) for developing the wonderful segmentation demo via connecting YOLO-World and EfficientSAM. You can try it now at the [🤗 HuggingFace Spaces](https://huggingface.co/spaces/SkalskiP/YOLO-World). `[2024-2-17]:` The largest model **X** of YOLO-World is released, which achieves better zero-shot performance! `[2024-2-17]:` We release the code & models for **YOLO-World-Seg** now! YOLO-World now supports open-vocabulary / zero-shot object segmentation! `[2024-2-15]:` The pre-traind YOLO-World-L with CC3M-Lite is released! `[2024-2-14]:` We provide the [`image_demo`](demo.py) for inference on images or directories. `[2024-2-10]:` We provide the [fine-tuning](./docs/finetuning.md) and [data](./docs/data.md) details for fine-tuning YOLO-World on the COCO dataset or the custom datasets! `[2024-2-3]:` We support the `Gradio` demo now in the repo and you can build the YOLO-World demo on your own device! `[2024-2-1]:` We've released the code and weights of YOLO-World now! `[2024-2-1]:` We deploy the YOLO-World demo on [HuggingFace 🤗](https://huggingface.co/spaces/stevengrove/YOLO-World), you can try it now! `[2024-1-31]:` We are excited to launch **YOLO-World**, a cutting-edge real-time open-vocabulary object detector. ## TODOYOLO-World is under active development and please stay tuned ☕️! If you have suggestions📃 or ideas💡,**we would love for you to bring them up in the [Roadmap](https://github.com/AILab-CVC/YOLO-World/issues/109)** ❤️!> YOLO-World 目前正在积极开发中📃,如果你有建议或者想法💡,**我们非常希望您在 [Roadmap](https://github.com/AILab-CVC/YOLO-World/issues/109) 中提出来** ❤️!## [FAQ (Frequently Asked Questions)](https://github.com/AILab-CVC/YOLO-World/discussions/149)We have set up an FAQ about YOLO-World in the discussion on GitHub. We hope everyone can raise issues or solutions during use here, and we also hope that everyone can quickly find solutions from it.> 我们在GitHub的discussion中建立了关于YOLO-World的常见问答,这里将收集

用户评论 (0)

发表评论

captcha

相关资源

STM32F103C8T6驱动步进电机

使用STM32驱动步进电机运动

11.99MB31积分

小天才电话手表通用刷机工具

【支持机型】降级和ROOT:Z2 Z3 Z5A/PRO/Q Z6(不含巅峰版、Z6A)Z7以及更高版本手表请不要尝试刷机,否则只有送售后一条路,没有救砖工具如果您自己有手表其它型号类似链接中的“刷机包”,并且有root的手段,具有一定专业知识,也可以尝试其它机型,但由于其它机型配置限制,一般刷成功意义也不大【操作原理】将手表降级,利用低版本小天才手表没有太严格的刷机限制,将手表进行ROOT,即可全方位各种姿势玩弄手表。刷机具有一定风险,请谨慎而为。此流程经过本人亲自试验、编写,可以保证可靠。【操作讲解】如果数据线稳定,且降级机型没有选择错误,操作没有失误,可以大大提高成功率。但是ROOT是有一定风险的,请务必谨慎尝试(如果您学会了救砖方法,可以大大降低刷机风险)。降级、ROOT全过程请拔卡操作,并不要连接WIFI 下载降级程序、手表驱动、刷机文件、刷机程序。一共应该安装3个程序,得到一个文件夹方式一:[链接下载]①手表降级工具:百度网盘:https://pan.baidu.com/s/1pctonhh7_rzTs9bs4eyb0w(提取码为yqff)

36.27MB11积分

YS9082HP-MPToolV8.00.00.00.012-FW210520-release-B37&B47.rar

只提供软件不提供技术支持

5.06MB19积分

c++ easyX库官方原版下载安装包

适用于c++初学者进阶使用easyX库时需要用easyX.h库,graphics.h库时不至于编译失败,适用于Dev-c++、Vs或小熊猫Dev-c++。教程在CSDN上、博客园和github上到处都有配置教程,可以自己找,我就不再此叙述啦,可参考https://*************/Dustinthewine/article/details/129431962这位大神写的教程或https://*************/weixin_61777209/article/details/124185685这篇大神写的。easyX库使用教程请参考https://*************/qq_52661581/article/details/125124212命令请参考https://*************/weixin_44690490/article/details/100679271(仅转载与推荐,无恶意,望大神见谅。)

131.69KB11积分