MATLAB车牌定位实现系统算法研究和实现
资源内容介绍
在MATLAB中实现车牌定位系统,可以按照以下步骤进行算法研究和实现:1. 读取图像:使用MATLAB的imread函数读取车辆图像。2. 图像预处理:对读取的图像进行预处理,包括图像灰度化、降噪、图像增强等。可以使用MATLAB的rgb2gray函数将图像转换为灰度图像,使用imnoise函数添加高斯噪声或者使用imfilter函数进行均值滤波等。3. 边缘检测:使用边缘检测算法,例如Sobel、Canny等,对预处理后的图像进行边缘检测。在MATLAB中可以使用edge函数实现边缘检测。4. 车牌区域提取:根据边缘检测结果,采用形态学操作、连通域分析等方法,提取出车牌区域。在MATLAB中可以使用imopen、imclose等形态学操作函数,使用bwlabel等连通域分析函数。5. 车牌倾斜校正:如果车牌有倾斜,可以使用旋转矫正算法进行倾斜校正。MATLAB提供了imrotate函数用于图像旋转。6. 字符分割:对车牌区域进行字符分割,将每个字符分割为一个单独的图像。可以使用连通域分析、投影法等方法进行字符分割。7. 字符识别:对字符图像进行识别,可以使 function bw2 = removeLargeArea(varargin)%BWAREAOPEN Remove small objects from binary image.% BW2 = BWAREAOPEN(BW,P) removes from a binary image all connected% components (objects) that have fewer than P pixels, producing another% binary image BW2. This operation is known as an area opening. The% default connectivity is 8 for two dimensions, 26 for three dimensions,% and CONNDEF(NDIMS(BW),'maximal') for higher dimensions. %% BW2 = BWAREAOPEN(BW,P,CONN) specifies the desired connectivity. CONN% may have the following scalar values: %% 4 two-dimensional four-connected neighborhood% 8 two-dimensional eight-connected neighborhood% 6 three-dimensional six-connected neighborhood% 18 three-dimensional 18-connected neighborhood% 26 three-dimensional 26-connected neighborhood%% Connectivity may be defined in a more general way for any dimension by% using for CONN a 3-by-3-by- ... -by-3 matrix of 0s and 1s. The% 1-valued elements define neighborhood locations relative to the center% element of CONN. CONN must be symmetric about its center element.%% Class Support% -------------% BW can be a logical or numeric array of any dimension, and it must be% nonsparse.%% BW2 is logical.%% Example% -------% Remove all objects in the image text.png containing fewer than 50% pixels.%% BW = imread('text.png');% BW2 = bwareaopen(BW,50);% imshow(BW);% figure, imshow(BW2)%% See also BWCONNCOMP, CONNDEF, REGIONPROPS.% Copyright 1993-2011 The MathWorks, Inc.% $Revision: 1.10.4.9 $ $Date: 2011/11/09 16:48:52 $% Input/output specs% ------------------% BW: N-D real full matrix% any numeric class% sparse not allowed% anything that's not logical is converted first using% bw = BW ~= 0% Empty ok% Inf's ok, treated as 1% NaN's ok, treated as 1%% P: double scalar% nonnegative integer%% CONN: connectivity%% BW2: logical, same size as BW% contains only 0s and 1s.[bw,p,conn] = parse_inputs(varargin{:});CC = bwconncomp(bw,conn);area = cellfun(@numel, CC.PixelIdxList);idxToKeep = CC.PixelIdxList(area <= p);idxToKeep = vertcat(idxToKeep{:});bw2 = false(size(bw));bw2(idxToKeep) = true;%%%%%% parse_inputs%%%function [bw,p,conn] = parse_inputs(varargin)narginchk(2,3)bw = varargin{1};validateattributes(bw,{'numeric' 'logical'},{'nonsparse'},mfilename,'BW',1);if ~islogical(bw) bw = bw ~= 0;endp = varargin{2};validateattributes(p,{'double'},{'scalar' 'integer' 'nonnegative'},... mfilename,'P',2);if (nargin >= 3) conn = varargin{3};else conn = conndef(ndims(bw),'maximal');endiptcheckconn(conn,mfilename,'CONN',3)