yolov5_distillation.zip
大小:1004.28KB
价格:19积分
下载量:0
评分:
5.0
上传者:m0_51579041
更新日期:2025-09-22

YOLOV5知识蒸馏源码

资源文件列表(大概)

文件名
大小
yolov5_distillation/
-
yolov5_distillation/.dockerignore
3.62KB
yolov5_distillation/.gitattributes
75B
yolov5_distillation/.github/
-
yolov5_distillation/.github/FUNDING.yml
118B
yolov5_distillation/.github/ISSUE_TEMPLATE/
-
yolov5_distillation/.github/ISSUE_TEMPLATE/bug-report.yml
2.87KB
yolov5_distillation/.github/ISSUE_TEMPLATE/config.yml
322B
yolov5_distillation/.github/ISSUE_TEMPLATE/feature-request.yml
1.76KB
yolov5_distillation/.github/ISSUE_TEMPLATE/question.yml
1.12KB
yolov5_distillation/.github/dependabot.yml
441B
yolov5_distillation/.github/workflows/
-
yolov5_distillation/.github/workflows/ci-testing.yml
3.42KB
yolov5_distillation/.github/workflows/codeql-analysis.yml
2KB
yolov5_distillation/.github/workflows/greetings.yml
4.95KB
yolov5_distillation/.github/workflows/rebase.yml
639B
yolov5_distillation/.github/workflows/stale.yml
1.89KB
yolov5_distillation/.gitignore
3.88KB
yolov5_distillation/.idea/
-
yolov5_distillation/.idea/.gitignore
50B
yolov5_distillation/.idea/inspectionProfiles/
-
yolov5_distillation/.idea/inspectionProfiles/Project_Default.xml
2.92KB
yolov5_distillation/.idea/inspectionProfiles/profiles_settings.xml
174B
yolov5_distillation/.idea/misc.xml
199B
yolov5_distillation/.idea/modules.xml
283B
yolov5_distillation/.idea/workspace.xml
2.96KB
yolov5_distillation/.idea/yolov5_prune.iml
496B
yolov5_distillation/1.6'
-
yolov5_distillation/CONTRIBUTING.md
4.87KB
yolov5_distillation/Dockerfile
1.43KB
yolov5_distillation/LICENSE
34.3KB
yolov5_distillation/README.md
7.07KB
yolov5_distillation/__pycache__/
-
yolov5_distillation/__pycache__/val.cpython-38.pyc
13.22KB
yolov5_distillation/data/
-
yolov5_distillation/data/Argoverse.yaml
2.7KB
yolov5_distillation/data/GlobalWheat2020.yaml
1.87KB
yolov5_distillation/data/Objects365.yaml
7.92KB
yolov5_distillation/data/SKU-110K.yaml
2.32KB
yolov5_distillation/data/VOC.yaml
3.33KB
yolov5_distillation/data/VisDrone.yaml
2.88KB
yolov5_distillation/data/coco.yaml
2.31KB
yolov5_distillation/data/coco128.yaml
1.68KB
yolov5_distillation/data/hyps/
-
yolov5_distillation/data/hyps/hyp.finetune.yaml
907B
yolov5_distillation/data/hyps/hyp.finetune_objects365.yaml
460B
yolov5_distillation/data/hyps/hyp.scratch-high.yaml
1.64KB
yolov5_distillation/data/hyps/hyp.scratch-low.yaml
1.65KB
yolov5_distillation/data/hyps/hyp.scratch-med.yaml
1.65KB
yolov5_distillation/data/hyps/hyp.scratch.yaml
1.62KB
yolov5_distillation/data/images/
-
yolov5_distillation/data/images/bus.jpg
476.01KB
yolov5_distillation/data/images/zidane.jpg
164.99KB
yolov5_distillation/data/scripts/
-
yolov5_distillation/data/scripts/download_weights.sh
523B
yolov5_distillation/data/scripts/get_coco.sh
900B
yolov5_distillation/data/scripts/get_coco128.sh
615B
yolov5_distillation/data/xView.yaml
4.98KB
yolov5_distillation/deploy/
-
yolov5_distillation/deploy/openvino/
-
yolov5_distillation/deploy/openvino/eval_openvino_yolov5.py
10.27KB
yolov5_distillation/deploy/openvino/yolov5s_distill_output_pytorch_int8_simple_model.json
929B
yolov5_distillation/deploy/openvino/yolov5s_output_pytorch_int8_simple_model.json
904B
yolov5_distillation/detect.py
13.25KB
yolov5_distillation/export.py
26.25KB
yolov5_distillation/hubconf.py
6.27KB
yolov5_distillation/models/
-
yolov5_distillation/models/__init__.py
-
yolov5_distillation/models/__pycache__/
-
yolov5_distillation/models/__pycache__/__init__.cpython-38.pyc
137B
yolov5_distillation/models/__pycache__/common.cpython-38.pyc
29.08KB
yolov5_distillation/models/__pycache__/experimental.cpython-38.pyc
4.76KB
yolov5_distillation/models/__pycache__/yolo.cpython-38.pyc
12.35KB
yolov5_distillation/models/common.py
32.09KB
yolov5_distillation/models/experimental.py
4.48KB
yolov5_distillation/models/hub/
-
yolov5_distillation/models/hub/anchors.yaml
3.26KB
yolov5_distillation/models/hub/yolov3-spp.yaml
1.53KB
yolov5_distillation/models/hub/yolov3-tiny.yaml
1.2KB
yolov5_distillation/models/hub/yolov3.yaml
1.52KB
yolov5_distillation/models/hub/yolov5-bifpn.yaml
1.39KB
yolov5_distillation/models/hub/yolov5-fpn.yaml
1.19KB
yolov5_distillation/models/hub/yolov5-p2.yaml
1.65KB
yolov5_distillation/models/hub/yolov5-p34.yaml
1.32KB
yolov5_distillation/models/hub/yolov5-p6.yaml
1.7KB
yolov5_distillation/models/hub/yolov5-p7.yaml
2.07KB
yolov5_distillation/models/hub/yolov5-panet.yaml
1.37KB
yolov5_distillation/models/hub/yolov5l6.yaml
1.78KB
yolov5_distillation/models/hub/yolov5m6.yaml
1.78KB
yolov5_distillation/models/hub/yolov5n6.yaml
1.78KB
yolov5_distillation/models/hub/yolov5s-ghost.yaml
1.45KB
yolov5_distillation/models/hub/yolov5s-transformer.yaml
1.41KB
yolov5_distillation/models/hub/yolov5s6.yaml
1.78KB
yolov5_distillation/models/hub/yolov5x6.yaml
1.78KB
yolov5_distillation/models/tf.py
20.17KB
yolov5_distillation/models/yolo.py
14.61KB
yolov5_distillation/models/yolov5l.yaml
1.37KB
yolov5_distillation/models/yolov5m.yaml
1.37KB
yolov5_distillation/models/yolov5n.yaml
1.37KB
yolov5_distillation/models/yolov5s.yaml
1.37KB
yolov5_distillation/models/yolov5x.yaml
1.37KB
yolov5_distillation/requirements.txt
939B
yolov5_distillation/runs/
-
yolov5_distillation/runs/train/
-
yolov5_distillation/runs/train/exp/
-
yolov5_distillation/runs/train/exp/events.out.tfevents.1710208916.5RKK3G3.3396.0
40B
yolov5_distillation/runs/train/exp/hyp.yaml
400B
yolov5_distillation/runs/train/exp/opt.yaml
625B
yolov5_distillation/runs/train/exp/weights/
-
yolov5_distillation/setup.cfg
1.24KB
yolov5_distillation/train.py
32.99KB
yolov5_distillation/train_distillation.py
36.14KB
yolov5_distillation/tutorial.ipynb
55.14KB
yolov5_distillation/utils/
-
yolov5_distillation/utils/__init__.py
1.11KB
yolov5_distillation/utils/__pycache__/
-
yolov5_distillation/utils/__pycache__/__init__.cpython-38.pyc
1KB
yolov5_distillation/utils/__pycache__/augmentations.cpython-38.pyc
8.83KB
yolov5_distillation/utils/__pycache__/autoanchor.cpython-38.pyc
6.11KB
yolov5_distillation/utils/__pycache__/callbacks.cpython-38.pyc
2.38KB
yolov5_distillation/utils/__pycache__/datasets.cpython-38.pyc
34.93KB
yolov5_distillation/utils/__pycache__/downloads.cpython-38.pyc
3.97KB
yolov5_distillation/utils/__pycache__/general.cpython-38.pyc
30.99KB
yolov5_distillation/utils/__pycache__/loss.cpython-38.pyc
11.22KB
yolov5_distillation/utils/__pycache__/metrics.cpython-38.pyc
11KB
yolov5_distillation/utils/__pycache__/plots.cpython-38.pyc
17.91KB
yolov5_distillation/utils/__pycache__/torch_utils.cpython-38.pyc
12.52KB
yolov5_distillation/utils/activations.py
3.69KB
yolov5_distillation/utils/augmentations.py
11.46KB
yolov5_distillation/utils/autoanchor.py
7KB
yolov5_distillation/utils/autobatch.py
2.13KB
yolov5_distillation/utils/aws/
-
yolov5_distillation/utils/aws/__init__.py
-
yolov5_distillation/utils/aws/mime.sh
780B
yolov5_distillation/utils/aws/resume.py
1.17KB
yolov5_distillation/utils/aws/userdata.sh
1.22KB
yolov5_distillation/utils/benchmarks.py
3.72KB
yolov5_distillation/utils/callbacks.py
2.41KB
yolov5_distillation/utils/datasets.py
44.84KB
yolov5_distillation/utils/downloads.py
6.14KB
yolov5_distillation/utils/flask_rest_api/
-
yolov5_distillation/utils/flask_rest_api/README.md
1.67KB
yolov5_distillation/utils/flask_rest_api/example_request.py
299B
yolov5_distillation/utils/flask_rest_api/restapi.py
1.05KB
yolov5_distillation/utils/general.py
35.64KB
yolov5_distillation/utils/google_app_engine/
-
yolov5_distillation/utils/google_app_engine/Dockerfile
821B
yolov5_distillation/utils/google_app_engine/additional_requirements.txt
105B
yolov5_distillation/utils/google_app_engine/app.yaml
174B
yolov5_distillation/utils/loggers/
-
yolov5_distillation/utils/loggers/__init__.py
7.45KB
yolov5_distillation/utils/loggers/__pycache__/
-
yolov5_distillation/utils/loggers/__pycache__/__init__.cpython-38.pyc
7.16KB
yolov5_distillation/utils/loggers/wandb/
-
yolov5_distillation/utils/loggers/wandb/README.md
10.57KB
yolov5_distillation/utils/loggers/wandb/__init__.py
-
yolov5_distillation/utils/loggers/wandb/__pycache__/
-
yolov5_distillation/utils/loggers/wandb/__pycache__/__init__.cpython-38.pyc
150B
yolov5_distillation/utils/loggers/wandb/__pycache__/wandb_utils.cpython-38.pyc
19.11KB
yolov5_distillation/utils/loggers/wandb/log_dataset.py
1.01KB
yolov5_distillation/utils/loggers/wandb/sweep.py
1.12KB
yolov5_distillation/utils/loggers/wandb/sweep.yaml
2.41KB
yolov5_distillation/utils/loggers/wandb/wandb_utils.py
26.51KB
yolov5_distillation/utils/loss.py
15.28KB
yolov5_distillation/utils/metrics.py
13.68KB
yolov5_distillation/utils/plots.py
20.04KB
yolov5_distillation/utils/torch_utils.py
13.87KB
yolov5_distillation/val.py
18.57KB

资源内容介绍

YOLOV5知识蒸馏源码
馃摎 This guide explains how to use **Weights & Biases** (W&B) with YOLOv5 馃殌. UPDATED 29 September 2021.* [About Weights & Biases](#about-weights-&-biases)* [First-Time Setup](#first-time-setup)* [Viewing runs](#viewing-runs)* [Disabling wandb](#disabling-wandb)* [Advanced Usage: Dataset Versioning and Evaluation](#advanced-usage)* [Reports: Share your work with the world!](#reports)## About Weights & BiasesThink of [W&B](https://wandb.ai/site?utm_campaign=repo_yolo_wandbtutorial) like GitHub for machine learning models. With a few lines of code, save everything you need to debug, compare and reproduce your models 鈥� architecture, hyperparameters, git commits, model weights, GPU usage, and even datasets and predictions.Used by top researchers including teams at OpenAI, Lyft, Github, and MILA, W&B is part of the new standard of best practices for machine learning. How W&B can help you optimize your machine learning workflows: * [Debug](https://wandb.ai/wandb/getting-started/reports/Visualize-Debug-Machine-Learning-Models--VmlldzoyNzY5MDk#Free-2) model performance in real time * [GPU usage](https://wandb.ai/wandb/getting-started/reports/Visualize-Debug-Machine-Learning-Models--VmlldzoyNzY5MDk#System-4) visualized automatically * [Custom charts](https://wandb.ai/wandb/customizable-charts/reports/Powerful-Custom-Charts-To-Debug-Model-Peformance--VmlldzoyNzY4ODI) for powerful, extensible visualization * [Share insights](https://wandb.ai/wandb/getting-started/reports/Visualize-Debug-Machine-Learning-Models--VmlldzoyNzY5MDk#Share-8) interactively with collaborators * [Optimize hyperparameters](https://docs.wandb.com/sweeps) efficiently * [Track](https://docs.wandb.com/artifacts) datasets, pipelines, and production models## First-Time Setup<details open> <summary> Toggle Details </summary>When you first train, W&B will prompt you to create a new account and will generate an **API key** for you. If you are an existing user you can retrieve your key from https://wandb.ai/authorize. This key is used to tell W&B where to log your data. You only need to supply your key once, and then it is remembered on the same device.W&B will create a cloud **project** (default is 'YOLOv5') for your training runs, and each new training run will be provided a unique run **name** within that project as project/name. You can also manually set your project and run name as: ```shell $ python train.py --project ... --name ... ```YOLOv5 notebook example: <a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> <a href="https://www.kaggle.com/ultralytics/yolov5"><img src="https://kaggle.com/static/images/open-in-kaggle.svg" alt="Open In Kaggle"></a><img width="960" alt="Screen Shot 2021-09-29 at 10 23 13 PM" src="https://user-images.githubusercontent.com/26833433/135392431-1ab7920a-c49d-450a-b0b0-0c86ec86100e.png"> </details>## Viewing Runs<details open> <summary> Toggle Details </summary>Run information streams from your environment to the W&B cloud console as you train. This allows you to monitor and even cancel runs in <b>realtime</b> . All important information is logged: * Training & Validation losses * Metrics: Precision, Recall, mAP@0.5, mAP@0.5:0.95 * Learning Rate over time * A bounding box debugging panel, showing the training progress over time * GPU: Type, **GPU Utilization**, power, temperature, **CUDA memory usage** * System: Disk I/0, CPU utilization, RAM memory usage * Your trained model as W&B Artifact * Environment: OS and Python types, Git repository and state, **training command**<p align="center"><img width="900" alt="Weights & Biases dashboard" src="https://user-images.githubusercontent.com/26833433/135390767-c28b050f-8455-4004-adb0-3b730386e2b2.png"></p></details> ## Disabling wandb* training after running `wandb disabled` inside that directory creates no wandb run![Screenshot (84)](https://user-images.githubusercontent.com/15766192/143441777-c780bdd7-7cb4-4404-9559-b4316030a985.png)* To enable wandb again, run `wandb online`![Screenshot (85)](https://user-images.githubusercontent.com/15766192/143441866-7191b2cb-22f0-4e0f-ae64-2dc47dc13078.png)## Advanced UsageYou can leverage W&B artifacts and Tables integration to easily visualize and manage your datasets, models and training evaluations. Here are some quick examples to get you started.<details open> <h3> 1: Train and Log Evaluation simultaneousy </h3> This is an extension of the previous section, but it'll also training after uploading the dataset. <b> This also evaluation Table</b> Evaluation table compares your predictions and ground truths across the validation set for each epoch. It uses the references to the already uploaded datasets, so no images will be uploaded from your system more than once. <details open> <summary> <b>Usage</b> </summary> <b>Code</b> <code> $ python train.py --upload_data val</code>![Screenshot from 2021-11-21 17-40-06](https://user-images.githubusercontent.com/15766192/142761183-c1696d8c-3f38-45ab-991a-bb0dfd98ae7d.png) </details> <h3>2. Visualize and Version Datasets</h3> Log, visualize, dynamically query, and understand your data with <a href='https://docs.wandb.ai/guides/data-vis/tables'>W&B Tables</a>. You can use the following command to log your dataset as a W&B Table. This will generate a <code>{dataset}_wandb.yaml</code> file which can be used to train from dataset artifact. <details> <summary> <b>Usage</b> </summary> <b>Code</b> <code> $ python utils/logger/wandb/log_dataset.py --project ... --name ... --data .. </code> ![Screenshot (64)](https://user-images.githubusercontent.com/15766192/128486078-d8433890-98a3-4d12-8986-b6c0e3fc64b9.png) </details> <h3> 3: Train using dataset artifact </h3> When you upload a dataset as described in the first section, you get a new config file with an added `_wandb` to its name. This file contains the information that can be used to train a model directly from the dataset artifact. <b> This also logs evaluation </b> <details> <summary> <b>Usage</b> </summary> <b>Code</b> <code> $ python train.py --data {data}_wandb.yaml </code>![Screenshot (72)](https://user-images.githubusercontent.com/15766192/128979739-4cf63aeb-a76f-483f-8861-1c0100b938a5.png) </details> <h3> 4: Save model checkpoints as artifacts </h3> To enable saving and versioning checkpoints of your experiment, pass `--save_period n` with the base cammand, where `n` represents checkpoint interval. You can also log both the dataset and model checkpoints simultaneously. If not passed, only the final model will be logged <details> <summary> <b>Usage</b> </summary> <b>Code</b> <code> $ python train.py --save_period 1 </code>![Screenshot (68)](https://user-images.githubusercontent.com/15766192/128726138-ec6c1f60-639d-437d-b4ee-3acd9de47ef3.png) </details></details> <h3> 5: Resume runs from checkpoint artifacts. </h3>Any run can be resumed using artifacts if the <code>--resume</code> argument starts with聽<code>wandb-artifact://</code>聽prefix followed by the run path, i.e,聽<code>wandb-artifact://username/project/runid </code>. This doesn't require the model checkpoint to be present on the local system. <details> <summary> <b>Usage</b> </summary> <b>Code</b> <code> $ python train.py --resume wandb-artifact://{run_path} </code>![Screenshot (70)](https://user-images.githubusercontent.com/15766192/128728988-4e84b355-6c87-41ae-a591-14aecf45343e.png) </details> <h3> 6: Resume runs from dataset artifact & checkpoint artifacts. </h3> <b> Local dataset or model checkpoints are not required. This can be used to resume runs directly on a different device </b> The syntax is same as the previous section, but you'll need to lof both the dataset and model checkpoints as artifacts, i.e, set bot <code>--upload_dataset<

用户评论 (0)

发表评论

captcha