22043104+范纬.zip
大小:3.52MB
价格:10积分
下载量:0
评分:
5.0
上传者:2401_85785612
更新日期:2025-09-22

22043104+范纬.zip

资源文件列表(大概)

文件名
大小
22043104+范纬/
-
22043104+范纬/第一次作业.docx
279.18KB
22043104+范纬/第七次作业.docx
141.03KB
22043104+范纬/第三次作业.docx
124.77KB
22043104+范纬/第九次作业.docx
1.01MB
22043104+范纬/第二次作业.docx
80.66KB
22043104+范纬/第五次作业.docx
552.54KB
22043104+范纬/第八次作业.docx
664.06KB
22043104+范纬/第六次作业.docx
149.53KB
22043104+范纬/第十次作业.docx
594.46KB
22043104+范纬/第四次作业.docx
133.33KB

资源内容介绍

22043104+范纬.zip
<link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/css/base.min.css" rel="stylesheet"/><link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/css/fancy.min.css" rel="stylesheet"/><link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/89507098/raw.css" rel="stylesheet"/><div id="sidebar" style="display: none"><div id="outline"></div></div><div class="pf w0 h0" data-page-no="1" id="pf1"><div class="pc pc1 w0 h0"><img alt="" class="bi x0 y0 w1 h1" src="/image.php?url=https://csdnimg.cn/release/download_crawler_static/89507098/bg1.jpg"/><div class="t m0 x1 h2 y1 ff1 fs0 fc0 sc0 ls0 ws0">1.</div><div class="t m0 x1 h2 y2 ff1 fs0 fc0 sc0 ls0 ws0">import numpy as np</div><div class="t m0 x1 h2 y3 ff1 fs0 fc0 sc0 ls0 ws0">import pandas as pd</div><div class="t m0 x1 h2 y4 ff1 fs0 fc0 sc0 ls0 ws0">import matplotlib.pyplot as plt</div><div class="t m0 x1 h2 y5 ff1 fs0 fc0 sc0 ls0 ws0">from mpl_toolkits.mplot3d import Axes3D</div><div class="t m0 x1 h2 y6 ff1 fs0 fc0 sc0 ls0 ws0">import warnings</div><div class="t m0 x1 h2 y7 ff1 fs0 fc0 sc0 ls0 ws0">warnings.filterwarnings(action = 'ignore')</div><div class="t m0 x1 h2 y8 ff1 fs0 fc0 sc0 ls0 ws0">%matplotlib inline</div><div class="t m0 x1 h2 y9 ff1 fs0 fc0 sc0 ls0 ws0">plt.rcParams['font.sans-serif']=['SimHei'] </div><div class="t m0 x1 h2 ya ff1 fs0 fc0 sc0 ls0 ws0">plt.rcParams['axes.unicode_minus']=False</div><div class="t m0 x1 h2 yb ff1 fs0 fc0 sc0 ls0 ws0">from sklearn.datasets import make_blobs</div><div class="t m0 x1 h2 yc ff1 fs0 fc0 sc0 ls0 ws0">from sklearn.feature_selection import <span class="_ _0"> </span>f_classif</div><div class="t m0 x1 h2 yd ff1 fs0 fc0 sc0 ls0 ws0">from sklearn import decomposition</div><div class="t m0 x1 h2 ye ff1 fs0 fc0 sc0 ls0 ws0">from sklearn.cluster import KMeans,AgglomerativeClustering</div><div class="t m0 x1 h2 yf ff1 fs0 fc0 sc0 ls0 ws0">from sklearn.metrics import silhouette_score,calinski_harabasz_score</div><div class="t m0 x1 h2 y10 ff1 fs0 fc0 sc0 ls0 ws0">import scipy.cluster.hierarchy as sch</div><div class="t m0 x1 h2 y11 ff1 fs0 fc0 sc0 ls0 ws0">from itertools import cycle</div><div class="t m0 x1 h2 y12 ff1 fs0 fc0 sc0 ls0 ws0">from matplotlib.patches import Ellipse</div><div class="t m0 x1 h2 y13 ff1 fs0 fc0 sc0 ls0 ws0">from sklearn.mixture import GaussianMixture</div><div class="t m0 x1 h2 y14 ff1 fs0 fc0 sc0 ls0 ws0">N=100</div><div class="t m0 x1 h2 y15 ff1 fs0 fc0 sc0 ls0 ws0">X1, <span class="_ _1"></span>y1 <span class="_ _1"></span>= <span class="_ _1"></span>make_blobs(n_samples=N, <span class="_ _1"></span>centers=4, <span class="_ _1"></span>n_features=2,random_state=0) <span class="_ _2"> </span>#2<span class="_ _3"> </span><span class="ff2">特征</span></div><div class="t m0 x1 h2 y16 ff1 fs0 fc0 sc0 ls0 ws0">X2, <span class="_ _1"></span>y2 <span class="_ _1"></span>= <span class="_ _4"></span>make_blobs(n_samples=N, <span class="_ _4"></span>centers=4, <span class="_ _1"></span>n_features=3,random_state=123) <span class="_ _5"> </span>#3<span class="_ _3"> </span><span class="ff2">特征</span></div><div class="t m0 x1 h2 y17 ff1 fs0 fc0 sc0 ls0 ws0">print('y1=',y1)</div><div class="t m0 x1 h2 y18 ff1 fs0 fc0 sc0 ls0 ws0">print('y2=',y2)</div><div class="t m0 x1 h3 y19 ff3 fs0 fc0 sc0 ls0 ws0">y1= <span class="_ _4"></span>[0 <span class="_ _6"></span>3 <span class="_ _6"></span>0 <span class="_ _4"></span>0 <span class="_ _6"></span>0 <span class="_ _4"></span>0 <span class="_ _6"></span>2 <span class="_ _4"></span>3 <span class="_ _6"></span>0 <span class="_ _4"></span>3 <span class="_ _6"></span>3 <span class="_ _4"></span>3 <span class="_ _6"></span>3 <span class="_ _4"></span>3 <span class="_ _6"></span>3 <span class="_ _4"></span>1 <span class="_ _6"></span>1 <span class="_ _4"></span>2 <span class="_ _6"></span>2 <span class="_ _4"></span>1 <span class="_ _6"></span>0 <span class="_ _4"></span>3 <span class="_ _6"></span>2 <span class="_ _4"></span>1 <span class="_ _6"></span>0 <span class="_ _4"></span>2 <span class="_ _6"></span>2 <span class="_ _4"></span>0 <span class="_ _6"></span>1 <span class="_ _4"></span>1 <span class="_ _6"></span>1 <span class="_ _4"></span>3 <span class="_ _6"></span>1 </div><div class="t m0 x1 h3 y1a ff3 fs0 fc0 sc0 ls0 ws0">1 <span class="_ _6"></span>2 <span class="_ _4"></span>0 <span class="_ _6"></span>3</div><div class="t m0 x1 h3 y1b ff3 fs0 fc0 sc0 ls0 ws0"> <span class="_ _6"></span>1 <span class="_ _4"></span>3 <span class="_ _6"></span>2 <span class="_ _4"></span>0 <span class="_ _6"></span>2 <span class="_ _4"></span>3 <span class="_ _6"></span>2 <span class="_ _4"></span>2 <span class="_ _6"></span>3 <span class="_ _4"></span>1 <span class="_ _6"></span>2 <span class="_ _4"></span>0 <span class="_ _6"></span>0 <span class="_ _4"></span>0 <span class="_ _6"></span>1 <span class="_ _4"></span>2 <span class="_ _6"></span>2 <span class="_ _4"></span>2 <span class="_ _6"></span>3 <span class="_ _4"></span>3 <span class="_ _6"></span>1 <span class="_ _4"></span>1 <span class="_ _6"></span>3 <span class="_ _4"></span>3 <span class="_ _6"></span>1 <span class="_ _4"></span>1 <span class="_ _6"></span>0 <span class="_ _4"></span>1 <span class="_ _6"></span>3 <span class="_ _4"></span>2 <span class="_ _6"></span>2 <span class="_ _4"></span>1 <span class="_ _6"></span>0 <span class="_ _4"></span>3 <span class="_ _6"></span>1 </div><div class="t m0 x1 h3 y1c ff3 fs0 fc0 sc0 ls0 ws0">0 <span class="_ _6"></span>3</div><div class="t m0 x1 h3 y1d ff3 fs0 fc0 sc0 ls0 ws0"> <span class="_ _6"></span>0 <span class="_ _4"></span>0 <span class="_ _6"></span>2 <span class="_ _4"></span>2 <span class="_ _6"></span>1 <span class="_ _4"></span>1 <span class="_ _6"></span>1 <span class="_ _4"></span>3 <span class="_ _6"></span>2 <span class="_ _4"></span>0 <span class="_ _6"></span>1 <span class="_ _4"></span>2 <span class="_ _6"></span>1 <span class="_ _4"></span>1 <span class="_ _6"></span>0 <span class="_ _4"></span>0 <span class="_ _6"></span>0 <span class="_ _4"></span>2 <span class="_ _6"></span>0 <span class="_ _4"></span>2 <span class="_ _6"></span>2 <span class="_ _4"></span>3 <span class="_ _6"></span>3 <span class="_ _4"></span>2 <span class="_ _6"></span>3 <span class="_ _4"></span>0]</div><div class="t m0 x1 h3 y1e ff3 fs0 fc0 sc0 ls0 ws0">y2= <span class="_ _6"></span>[2 <span class="_ _4"></span>0 <span class="_ _6"></span>1 <span class="_ _4"></span>3 <span class="_ _6"></span>2 <span class="_ _4"></span>2 <span class="_ _6"></span>1 <span class="_ _4"></span>0 <span class="_ _6"></span>2 <span class="_ _4"></span>1 <span class="_ _6"></span>0 <span class="_ _4"></span>1 <span class="_ _6"></span>1 <span class="_ _4"></span>0 <span class="_ _6"></span>1 <span class="_ _4"></span>3 <span class="_ _6"></span>0 <span class="_ _4"></span>0 <span class="_ _6"></span>3 <span class="_ _4"></span>1 <span class="_ _6"></span>0 <span class="_ _4"></span>3 <span class="_ _6"></span>1 <span class="_ _4"></span>0 <span class="_ _6"></span>3 <span class="_ _4"></span>1 <span class="_ _6"></span>1 <span class="_ _4"></span>0 <span class="_ _6"></span>2 <span class="_ _4"></span>2 <span class="_ _6"></span>0 <span class="_ _4"></span>3 <span class="_ _6"></span>3 </div><div class="t m0 x1 h3 y1f ff3 fs0 fc0 sc0 ls0 ws0">3 <span class="_ _6"></span>3 <span class="_ _4"></span>2 <span class="_ _6"></span>0</div><div class="t m0 x1 h3 y20 ff3 fs0 fc0 sc0 ls0 ws0"> <span class="_ _6"></span>0 <span class="_ _4"></span>3 <span class="_ _6"></span>1 <span class="_ _4"></span>2 <span class="_ _6"></span>0 <span class="_ _4"></span>3 <span class="_ _6"></span>0 <span class="_ _4"></span>2 <span class="_ _6"></span>2 <span class="_ _4"></span>2 <span class="_ _6"></span>2 <span class="_ _4"></span>0 <span class="_ _6"></span>2 <span class="_ _4"></span>1 <span class="_ _6"></span>0 <span class="_ _4"></span>1 <span class="_ _6"></span>3 <span class="_ _4"></span>0 <span class="_ _6"></span>1 <span class="_ _4"></span>2 <span class="_ _6"></span>3 <span class="_ _4"></span>0 <span class="_ _6"></span>1 <span class="_ _4"></span>1 <span class="_ _6"></span>2 <span class="_ _4"></span>2 <span class="_ _6"></span>3 <span class="_ _4"></span>2 <span class="_ _6"></span>3 <span class="_ _4"></span>3 <span class="_ _6"></span>3 <span class="_ _4"></span>1 <span class="_ _6"></span>1 <span class="_ _4"></span>0 <span class="_ _6"></span>3 </div><div class="t m0 x1 h3 y21 ff3 fs0 fc0 sc0 ls0 ws0">2 <span class="_ _6"></span>2</div><div class="t m0 x1 h3 y22 ff3 fs0 fc0 sc0 ls0 ws0"> <span class="_ _6"></span>0 <span class="_ _4"></span>1 <span class="_ _6"></span>2 <span class="_ _4"></span>3 <span class="_ _6"></span>2 <span class="_ _4"></span>3 <span class="_ _6"></span>1 <span class="_ _4"></span>1 <span class="_ _6"></span>0 <span class="_ _4"></span>2 <span class="_ _6"></span>0 <span class="_ _4"></span>2 <span class="_ _6"></span>3 <span class="_ _4"></span>3 <span class="_ _6"></span>0 <span class="_ _4"></span>1 <span class="_ _6"></span>1 <span class="_ _4"></span>1 <span class="_ _6"></span>3 <span class="_ _4"></span>3 <span class="_ _6"></span>2 <span class="_ _4"></span>0 <span class="_ _6"></span>1 <span class="_ _4"></span>2 <span class="_ _6"></span>3 <span class="_ _4"></span>0]</div><div class="t m0 x1 h2 y23 ff1 fs0 fc0 sc0 ls0 ws0">2.</div><div class="t m0 x1 h2 y24 ff1 fs0 fc0 sc0 ls0 ws0">plt.figure(figsize=(18,12))</div><div class="t m0 x1 h2 y25 ff1 fs0 fc0 sc0 ls0 ws0">plt.subplot(121)</div><div class="t m0 x1 h2 y26 ff1 fs0 fc0 sc0 ls0 ws0">plt.scatter(X1[:,0],X1[:,1],s=50)</div><div class="t m0 x1 h2 y27 ff1 fs0 fc0 sc0 ls0 ws0">plt.xlabel("X1-1")</div><div class="t m0 x1 h2 y28 ff1 fs0 fc0 sc0 ls0 ws0">plt.ylabel("X1-2")</div><div class="t m0 x1 h2 y29 ff1 fs0 fc0 sc0 ls0 ws0">plt.title("%d<span class="_ _3"> </span><span class="ff2">个样本观测点的分布</span>"%N)</div><div class="t m0 x1 h2 y2a ff1 fs0 fc0 sc0 ls0 ws0">ax=plt.subplot(122, projection='3d')</div><div class="t m0 x1 h2 y2b ff1 fs0 fc0 sc0 ls0 ws0">ax.scatter(X2[:,0],X2[:,1],X2[:,2],c='blue')</div><div class="t m0 x1 h2 y2c ff1 fs0 fc0 sc0 ls0 ws0">ax.set_xlabel("X2-1")</div></div><div class="pi" data-data='{"ctm":[1.611830,0.000000,0.000000,1.611830,0.000000,0.000000]}'></div></div><div id="pf2" class="pf w0 h0" data-page-no="2"><div class="pc pc2 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src="/image.php?url=https://csdnimg.cn/release/download_crawler_static/89507098/bg2.jpg"><div class="t m0 x1 h2 y1 ff1 fs0 fc0 sc0 ls0 ws0">ax.set_ylabel("X2-2")</div><div class="t m0 x1 h2 y2 ff1 fs0 fc0 sc0 ls0 ws0">ax.set_zlabel("X2-3")</div><div class="t m0 x1 h2 y3 ff1 fs0 fc0 sc0 ls0 ws0">ax.set_title("%d<span class="_ _3"> </span><span class="ff2">&#20010;&#26679;&#26412;&#35266;&#27979;&#28857;&#30340;&#20998;&#24067;</span>"%N)</div><div class="t m0 x1 h4 y2d ff3 fs0 fc0 sc0 ls0 ws0">Text(0.5, <span class="_ _6"></span>0.92, <span class="_ _4"></span>'100<span class="_ _3"> </span><span class="ff4">&#20010;&#26679;&#26412;&#35266;&#27979;&#28857;&#30340;&#20998;&#24067;</span>')</div><div class="t m0 x1 h2 y18 ff1 fs0 fc0 sc0 ls0 ws0">3.</div><div class="t m0 x1 h2 y2e ff1 fs0 fc0 sc0 ls0 ws0">KM= KMeans(n_clusters=4, max_iter = 500) <span class="_ _0"> </span># <span class="_ _3"> </span><span class="ff2">&#24314;&#31435;&#20108;&#29305;&#24449;&#25968;&#25454;</span> <span class="_ _7"> </span>KMeans<span class="_ _3"> </span><span class="ff2">&#27169;&#22411;</span></div><div class="t m0 x1 h2 y2f ff1 fs0 fc0 sc0 ls0 ws0">KM.fit(X1) <span class="_ _8"> </span>#<span class="ff2">&#35757;&#32451;</span></div><div class="t m0 x1 h2 y30 ff1 fs0 fc0 sc0 ls0 ws0">labels=np.unique(KM.labels_) <span class="_ _9"> </span>#<span class="ff2">&#39044;&#27979;</span></div><div class="t m0 x1 h2 y31 ff1 fs0 fc0 sc0 ls0 ws0">print('labels=',labels)</div><div class="t m0 x1 h2 y32 ff1 fs0 fc0 sc0 ls0 ws0">#<span class="ff2">&#39044;&#27979;&#32467;&#26524;&#21487;&#35270;&#21270;</span></div><div class="t m0 x1 h2 y33 ff1 fs0 fc0 sc0 ls0 ws0">markers='o*^+' </div><div class="t m0 x1 h2 y34 ff1 fs0 fc0 sc0 ls0 ws0">for i,label in enumerate(labels): <span class="_ _a"> </span>#<span class="ff2">&#20998;&#21035;&#32472;&#21046;&#27599;&#19968;&#20010;&#23567;&#31867;&#25968;&#25454;</span></div><div class="t m0 x1 h2 y35 ff1 fs0 fc0 sc0 ls0 ws0"> <span class="_ _5"> </span>plt.scatter(X1[KM.labels_==label,0],X1[KM.labels_==label,1],</div><div class="t m0 x1 h2 y36 ff1 fs0 fc0 sc0 ls0 ws0"> <span class="_ _b"> </span>label="cluster %d"%label,marker=markers[i],s=50)</div><div class="t m0 x1 h2 y37 ff1 fs0 fc0 sc0 ls0 ws0">plt.scatter(KM.cluster_centers_[:,0],KM.cluster_centers_[:,1],marker='X',</div><div class="t m0 x1 h2 y23 ff1 fs0 fc0 sc0 ls0 ws0"> <span class="_ _c"> </span>s=60,c='r',label="<span class="ff2">&#23567;&#31867;&#20013;&#24515;</span>") <span class="_ _d"> </span>#<span class="ff2">&#32472;&#21046;&#23567;&#31867;&#20013;&#24515;</span></div><div class="t m0 x1 h2 y24 ff1 fs0 fc0 sc0 ls0 ws0">plt.legend(loc="best",framealpha=0.5)</div><div class="t m0 x1 h2 y25 ff1 fs0 fc0 sc0 ls0 ws0">plt.xlabel("X1-1")</div><div class="t m0 x1 h2 y26 ff1 fs0 fc0 sc0 ls0 ws0">plt.ylabel("X1-2")</div><div class="t m0 x1 h2 y27 ff1 fs0 fc0 sc0 ls0 ws0">plt.title("%d<span class="_ _3"> </span><span class="ff2">&#20010;&#26679;&#26412;&#35266;&#27979;&#28857;&#30340;&#32858;&#31867;&#32467;&#26524;</span>"%N)</div><div class="t m0 x1 h5 y38 ff3 fs1 fc0 sc0 ls0 ws0">labels= <span class="_ _6"></span>[0 <span class="_ _6"></span>1 <span class="_ _6"></span>2 <span class="_ _6"></span>3]</div><div class="t m0 x2 h3 y39 ff3 fs0 fc1 sc0 ls0 ws0">Out[9]:</div><div class="t m0 x1 h6 y3a ff3 fs1 fc0 sc0 ls0 ws0">Text(0.5, <span class="_ _6"></span>1.0, <span class="_ _6"></span>'100<span class="_ _e"> </span><span class="ff4">&#20010;&#26679;&#26412;&#35266;&#27979;&#28857;&#30340;&#32858;&#31867;&#32467;&#26524;</span>')</div></div><div class="pi" data-data='{"ctm":[1.611830,0.000000,0.000000,1.611830,0.000000,0.000000]}'></div></div><div id="pf3" class="pf w0 h0" data-page-no="3"><div class="pc pc3 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src="/image.php?url=https://csdnimg.cn/release/download_crawler_static/89507098/bg3.jpg"><div class="t m0 x1 h5 y3b ff3 fs1 fc0 sc0 ls0 ws0">4.</div><div class="t m0 x1 h6 y3c ff3 fs1 fc0 sc0 ls0 ws0">KM= <span class="_ _6"></span>KMeans(n_clusters=4, <span class="_ _6"></span>max_iter <span class="_ _6"></span>= <span class="_ _6"></span>500) <span class="_ _f"></span># <span class="_ _6"></span><span class="ff4">&#24314;&#31435;&#19977;&#29305;&#24449;&#25968;&#25454;<span class="ff3"> </span></span></div><div class="t m0 x1 h6 y3d ff3 fs1 fc0 sc0 ls0 ws0">KMeans<span class="_ _e"> </span><span class="ff4">&#27169;&#22411;</span></div><div class="t m0 x1 h6 y3e ff3 fs1 fc0 sc0 ls0 ws0">KM.fit(X2) <span class="_ _10"></span>#<span class="ff4">&#35757;&#32451;</span></div><div class="t m0 x1 h6 y3f ff3 fs1 fc0 sc0 ls0 ws0">labels=np.unique(KM.labels_) <span class="_ _11"></span>#<span class="ff4">&#39044;&#27979;</span></div><div class="t m0 x1 h6 y40 ff3 fs1 fc0 sc0 ls0 ws0">#(<span class="ff4">&#33719;&#24471;&#32858;&#31867;&#26631;&#31614;&#65292;&#32858;&#31867;&#35299;&#23384;&#20648;&#22312;<span class="_ _e"> </span></span>K-<span class="ff4">&#22343;&#20540;&#32858;&#31867;&#23545;&#35937;&#30340;</span>.labels_<span class="ff4">&#23646;&#24615;&#20013;</span>)</div><div class="t m0 x1 h6 y41 ff3 fs1 fc0 sc0 ls0 ws0">#<span class="ff4">&#39044;&#27979;&#32467;&#26524;&#21487;&#35270;&#21270;</span></div><div class="t m0 x1 h6 y42 ff3 fs1 fc0 sc0 ls0 ws0">#(<span class="ff4">&#21033;&#29992;<span class="_ _e"> </span></span>for<span class="_ _e"> </span><span class="ff4">&#24490;&#29615;&#21487;&#35270;&#21270;&#32858;&#31867;&#35299;&#65292;&#21363;&#20197;&#19981;&#21516;&#39068;&#33394;&#21644;&#24418;&#29366;&#30340;&#31526;&#21495;&#20998;&#21035;&#32472;&#21046;&#21508;&#23567;&#31867;&#30340;</span></div><div class="t m0 x1 h6 y43 ff4 fs1 fc0 sc0 ls0 ws0">&#25955;&#28857;&#22270;<span class="ff3">)</span></div><div class="t m0 x1 h5 y44 ff3 fs1 fc0 sc0 ls0 ws0">ax=plt.subplot(111, <span class="_ _6"></span>projection='3d')</div><div class="t m0 x1 h5 y45 ff3 fs1 fc0 sc0 ls0 ws0">markers='o*^+' </div><div class="t m0 x1 h6 y46 ff3 fs1 fc0 sc0 ls0 ws0">for <span class="_ _6"></span>i,label <span class="_ _6"></span>in <span class="_ _6"></span>enumerate(labels): <span class="_ _12"></span>#<span class="ff4">&#20998;&#21035;&#32472;&#21046;&#27599;&#19968;&#20010;&#23567;&#31867;</span></div><div class="t m0 x1 h6 y47 ff4 fs1 fc0 sc0 ls0 ws0">&#25968;&#25454;</div><div class="t m0 x1 h5 y48 ff3 fs1 fc0 sc0 ls0 ws0"> <span class="_ _f"></span>ax.scatter(X2[KM.labels_==label,0],X2[KM.labels_==labe</div><div class="t m0 x1 h5 y49 ff3 fs1 fc0 sc0 ls0 ws0">l,1],X2[KM.labels_==label,2],</div><div class="t m0 x1 h5 y4a ff3 fs1 fc0 sc0 ls0 ws0">label="cluster <span class="_ _6"></span>%d"%label,marker=markers[i],s=50)</div><div class="t m0 x1 h5 y4b ff3 fs1 fc0 sc0 ls0 ws0">ax.scatter(KM.cluster_centers_[:,0],KM.cluster_centers_[:</div><div class="t m0 x1 h5 y4c ff3 fs1 fc0 sc0 ls0 ws0">,1],KM.cluster_centers_[:,2], <span class="_ _6"></span>marker='X',s=60,c='r',label</div><div class="t m0 x1 h6 y4d ff3 fs1 fc0 sc0 ls0 ws0">="<span class="ff4">&#23567;&#31867;&#20013;&#24515;</span>") <span class="_ _6"></span>#<span class="ff4">&#32472;&#21046;&#23567;&#31867;&#20013;&#24515;</span></div><div class="t m0 x1 h6 y4e ff3 fs1 fc0 sc0 ls0 ws0"> <span class="_ _6"></span>#<span class="ff4">&#23567;&#31867;&#30340;&#31867;&#36136;&#24515;&#22352;&#26631;&#23384;&#20648;&#22312;<span class="_ _e"> </span></span>K-<span class="ff4">&#22343;&#20540;&#23545;&#35937;&#30340;<span class="_ _e"> </span></span>cluster_centers_<span class="ff4">&#23646;&#24615;&#20013;</span></div><div class="t m0 x1 h5 y38 ff3 fs1 fc0 sc0 ls0 ws0">ax.legend(loc="best",framealpha=0.5)</div><div class="t m0 x1 h5 y4f ff3 fs1 fc0 sc0 ls0 ws0">ax.set_xlabel("X2-1")</div><div class="t m0 x1 h5 y50 ff3 fs1 fc0 sc0 ls0 ws0">ax.set_ylabel("X2-2")</div><div class="t m0 x1 h5 y51 ff3 fs1 fc0 sc0 ls0 ws0">ax.set_zlabel("X2-3")</div><div class="t m0 x1 h6 y52 ff3 fs1 fc0 sc0 ls0 ws0">ax.set_title("%d<span class="_ _e"> </span><span class="ff4">&#20010;&#26679;&#26412;&#35266;&#27979;&#28857;&#30340;&#32858;&#31867;&#32467;&#26524;</span>"%N)</div></div><div class="pi" data-data='{"ctm":[1.611830,0.000000,0.000000,1.611830,0.000000,0.000000]}'></div></div>

用户评论 (0)

发表评论

captcha

相关资源

JAVA+Springboot框架小说电子书阅读系统 毕业设计开题报告(2025版)

在线电子书阅读系统是一种基于互联网平台的电子书阅读系统,它允许用户通过浏览器或移动应用程序在线阅读电子书。它的研究背景与意义主要体现在以下几个方面:数字化阅读的普及:随着互联网技术和移动设备的不断发展,数字化阅读已经成为人们获取信息的重要方式之一。在线电子书阅读系统的出现,为读者提供了更加方便、快捷的阅读方式,使得读者可以在任何时间、任何地点获取到所需的电子书资源。高效管理电子书资源:在线电子书阅读系统可以实现对电子书的高效管理,包括电子书的上传、分类、检索、预览、下载等功能,使得图书馆或出版社等机构可以更加方便地管理电子书资源,提高电子书的利用率和阅读体验。提高阅读体验:在线电子书阅读系统通常提供了丰富的阅读功能和交互方式,包括字体大小调整、背景色调整、夜间模式、书签等功能,使得读者可以根据自己的阅读习惯和需求进行个性化设置,提高阅读体验。促进知识传播:在线电子书阅读系统可以为用户提供广泛的电子书资源,包括文学、历史、科技、艺术等多个领域,促进知识的传播和交流。同时,通过在线电子书阅读系统,读者可以方便地与其他读者进行交流和讨论,增强阅读的互动性和社交性。适应移动阅读趋势:

105.63KB12积分

JAVA+Springboot框架小说电子书阅读系统 毕业设计开题答辩PPT

用户注册:填写手机账号和密码,注册新用户登录功能:注册普通账号登录;登录后可以修改用户的基本信息,也可以退出。关于我们:关于我们、联系我们、加入我们、法律声明轮播广告:后台设置首页轮播广告图,可以连接到广告页面。留言反馈:用户填写李哭咽的主题、联系人、电话、邮箱、留言内容;后台管理可以查看留言列表,可以删除留言。图书列表:显示网站提供的所有图书信息;可以按图书的分类筛选。图书查询:网站顶部可以输入图书关键字查询图书详情:电影的介绍信息,包含封面,价格,介绍等图书购买:在图书详情页面,点击“我要购买课程”,确认购买。图书收藏:在图书详情页面,登录的用户,可以对当前图书进行收藏,收藏后的图书列表在用户中心可以查看,可以进行删除。图书评论:在图书详情页面,登录的用户,可以填写评论内容,提交评论信息;提交的评论信息需要后台管理员审核后可见。图书阅读:在线电子书阅读我的图书列表:列出用户的所有购买的图书课程,可以点击图书课程名称,进入图书学习页面在线学习。图书浏览、收藏、评论:列出用户浏览过的网站上的图书课程信息浏览记录;收藏过的图书课程信息列表,支持删除;评论过的信息

350.82KB41积分

openssh-9.8p1-1.el7.x86-64.rpm

OpenSSH远程代码执行漏洞(CVE-2024-6387) 目前OpenSSH上游已发布版本更新,受影响用户可通过软件源升级到最新版本(OpenSSH 9.8p1)或编译安装最新版本。

16.37MB20积分

2345看图王x64.zip

2345看图王x64.zip

15.21MB30积分