yolov5-7.0.zip
大小:14.6MB
价格:23积分
下载量:0
评分:
5.0
上传者:JH_joker
更新日期:2024-08-14

yolov5-7.0源码,附yolov5s分割模型权重

资源文件列表(大概)

文件名
大小
yolov5-7.0/
-
yolov5-7.0/.dockerignore
3.61KB
yolov5-7.0/.gitattributes
75B
yolov5-7.0/.github/
-
yolov5-7.0/.github/CODE_OF_CONDUCT.md
5.11KB
yolov5-7.0/.github/ISSUE_TEMPLATE/
-
yolov5-7.0/.github/ISSUE_TEMPLATE/bug-report.yml
2.87KB
yolov5-7.0/.github/ISSUE_TEMPLATE/config.yml
280B
yolov5-7.0/.github/ISSUE_TEMPLATE/feature-request.yml
1.76KB
yolov5-7.0/.github/ISSUE_TEMPLATE/question.yml
1.12KB
yolov5-7.0/.github/PULL_REQUEST_TEMPLATE.md
693B
yolov5-7.0/.github/README_cn.md
27.72KB
yolov5-7.0/.github/SECURITY.md
359B
yolov5-7.0/.github/dependabot.yml
441B
yolov5-7.0/.github/workflows/
-
yolov5-7.0/.github/workflows/ci-testing.yml
7.25KB
yolov5-7.0/.github/workflows/codeql-analysis.yml
2KB
yolov5-7.0/.github/workflows/docker.yml
1.54KB
yolov5-7.0/.github/workflows/greetings.yml
4.75KB
yolov5-7.0/.github/workflows/stale.yml
1.97KB
yolov5-7.0/.gitignore
3.89KB
yolov5-7.0/.pre-commit-config.yaml
1.52KB
yolov5-7.0/CONTRIBUTING.md
4.88KB
yolov5-7.0/LICENSE
34.3KB
yolov5-7.0/README.md
36.46KB
yolov5-7.0/benchmarks.py
7.65KB
yolov5-7.0/classify/
-
yolov5-7.0/classify/predict.py
11.22KB
yolov5-7.0/classify/train.py
15.95KB
yolov5-7.0/classify/tutorial.ipynb
100.49KB
yolov5-7.0/classify/val.py
7.86KB
yolov5-7.0/data/
-
yolov5-7.0/data/Argoverse.yaml
2.67KB
yolov5-7.0/data/GlobalWheat2020.yaml
1.84KB
yolov5-7.0/data/ImageNet.yaml
18.43KB
yolov5-7.0/data/Objects365.yaml
8.99KB
yolov5-7.0/data/SKU-110K.yaml
2.29KB
yolov5-7.0/data/VOC.yaml
3.41KB
yolov5-7.0/data/VisDrone.yaml
2.9KB
yolov5-7.0/data/coco.yaml
2.44KB
yolov5-7.0/data/coco128-seg.yaml
1.82KB
yolov5-7.0/data/coco128.yaml
1.81KB
yolov5-7.0/data/hyps/
-
yolov5-7.0/data/hyps/hyp.Objects365.yaml
673B
yolov5-7.0/data/hyps/hyp.VOC.yaml
1.13KB
yolov5-7.0/data/hyps/hyp.scratch-high.yaml
1.64KB
yolov5-7.0/data/hyps/hyp.scratch-low.yaml
1.65KB
yolov5-7.0/data/hyps/hyp.scratch-med.yaml
1.65KB
yolov5-7.0/data/images/
-
yolov5-7.0/data/images/bus.jpg
476.01KB
yolov5-7.0/data/images/zidane.jpg
164.99KB
yolov5-7.0/data/scripts/
-
yolov5-7.0/data/scripts/download_weights.sh
640B
yolov5-7.0/data/scripts/get_coco.sh
1.53KB
yolov5-7.0/data/scripts/get_coco128.sh
618B
yolov5-7.0/data/scripts/get_imagenet.sh
1.63KB
yolov5-7.0/data/xView.yaml
5.05KB
yolov5-7.0/detect.py
13.75KB
yolov5-7.0/export.py
30.81KB
yolov5-7.0/hubconf.py
7.53KB
yolov5-7.0/models/
-
yolov5-7.0/models/__init__.py
-
yolov5-7.0/models/common.py
40.49KB
yolov5-7.0/models/experimental.py
4.22KB
yolov5-7.0/models/hub/
-
yolov5-7.0/models/hub/anchors.yaml
3.26KB
yolov5-7.0/models/hub/yolov3-spp.yaml
1.53KB
yolov5-7.0/models/hub/yolov3-tiny.yaml
1.2KB
yolov5-7.0/models/hub/yolov3.yaml
1.52KB
yolov5-7.0/models/hub/yolov5-bifpn.yaml
1.39KB
yolov5-7.0/models/hub/yolov5-fpn.yaml
1.19KB
yolov5-7.0/models/hub/yolov5-p2.yaml
1.65KB
yolov5-7.0/models/hub/yolov5-p34.yaml
1.32KB
yolov5-7.0/models/hub/yolov5-p6.yaml
1.7KB
yolov5-7.0/models/hub/yolov5-p7.yaml
2.07KB
yolov5-7.0/models/hub/yolov5-panet.yaml
1.37KB
yolov5-7.0/models/hub/yolov5l6.yaml
1.78KB
yolov5-7.0/models/hub/yolov5m6.yaml
1.78KB
yolov5-7.0/models/hub/yolov5n6.yaml
1.78KB
yolov5-7.0/models/hub/yolov5s-LeakyReLU.yaml
1.46KB
yolov5-7.0/models/hub/yolov5s-ghost.yaml
1.45KB
yolov5-7.0/models/hub/yolov5s-transformer.yaml
1.41KB
yolov5-7.0/models/hub/yolov5s6.yaml
1.78KB
yolov5-7.0/models/hub/yolov5x6.yaml
1.78KB
yolov5-7.0/models/segment/
-
yolov5-7.0/models/segment/yolov5l-seg.yaml
1.38KB
yolov5-7.0/models/segment/yolov5m-seg.yaml
1.38KB
yolov5-7.0/models/segment/yolov5n-seg.yaml
1.38KB
yolov5-7.0/models/segment/yolov5s-seg.yaml
1.38KB
yolov5-7.0/models/segment/yolov5x-seg.yaml
1.38KB
yolov5-7.0/models/tf.py
26.38KB
yolov5-7.0/models/yolo.py
17.35KB
yolov5-7.0/models/yolov5l.yaml
1.37KB
yolov5-7.0/models/yolov5m.yaml
1.37KB
yolov5-7.0/models/yolov5n.yaml
1.37KB
yolov5-7.0/models/yolov5s.yaml
1.37KB
yolov5-7.0/models/yolov5x.yaml
1.37KB
yolov5-7.0/requirements.txt
1.5KB
yolov5-7.0/segment/
-
yolov5-7.0/segment/predict.py
14.66KB
yolov5-7.0/segment/train.py
33.74KB
yolov5-7.0/segment/tutorial.ipynb
41.88KB
yolov5-7.0/segment/val.py
23.32KB
yolov5-7.0/setup.cfg
1.65KB
yolov5-7.0/train.py
32.74KB
yolov5-7.0/tutorial.ipynb
52.58KB
yolov5-7.0/utils/
-
yolov5-7.0/utils/__init__.py
2.3KB
yolov5-7.0/utils/activations.py
3.37KB
yolov5-7.0/utils/augmentations.py
16.61KB
yolov5-7.0/utils/autoanchor.py
7.25KB
yolov5-7.0/utils/autobatch.py
2.92KB
yolov5-7.0/utils/aws/
-
yolov5-7.0/utils/aws/__init__.py
-
yolov5-7.0/utils/aws/mime.sh
780B
yolov5-7.0/utils/aws/resume.py
1.17KB
yolov5-7.0/utils/aws/userdata.sh
1.22KB
yolov5-7.0/utils/callbacks.py
2.6KB
yolov5-7.0/utils/dataloaders.py
54.28KB
yolov5-7.0/utils/docker/
-
yolov5-7.0/utils/docker/Dockerfile
2.39KB
yolov5-7.0/utils/docker/Dockerfile-arm64
1.64KB
yolov5-7.0/utils/docker/Dockerfile-cpu
1.64KB
yolov5-7.0/utils/downloads.py
4.54KB
yolov5-7.0/utils/flask_rest_api/
-
yolov5-7.0/utils/flask_rest_api/README.md
1.67KB
yolov5-7.0/utils/flask_rest_api/example_request.py
368B
yolov5-7.0/utils/flask_rest_api/restapi.py
1.41KB
yolov5-7.0/utils/general.py
45.66KB
yolov5-7.0/utils/google_app_engine/
-
yolov5-7.0/utils/google_app_engine/Dockerfile
821B
yolov5-7.0/utils/google_app_engine/additional_requirements.txt
105B
yolov5-7.0/utils/google_app_engine/app.yaml
174B
yolov5-7.0/utils/loggers/
-
yolov5-7.0/utils/loggers/__init__.py
16.72KB
yolov5-7.0/utils/loggers/clearml/
-
yolov5-7.0/utils/loggers/clearml/README.md
10.6KB
yolov5-7.0/utils/loggers/clearml/__init__.py
-
yolov5-7.0/utils/loggers/clearml/clearml_utils.py
7.38KB
yolov5-7.0/utils/loggers/clearml/hpo.py
5.15KB
yolov5-7.0/utils/loggers/comet/
-
yolov5-7.0/utils/loggers/comet/README.md
10.39KB
yolov5-7.0/utils/loggers/comet/__init__.py
18.29KB
yolov5-7.0/utils/loggers/comet/comet_utils.py
4.64KB
yolov5-7.0/utils/loggers/comet/hpo.py
6.5KB
yolov5-7.0/utils/loggers/comet/optimizer_config.json
2.95KB
yolov5-7.0/utils/loggers/wandb/
-
yolov5-7.0/utils/loggers/wandb/README.md
10.55KB
yolov5-7.0/utils/loggers/wandb/__init__.py
-
yolov5-7.0/utils/loggers/wandb/log_dataset.py
1.01KB
yolov5-7.0/utils/loggers/wandb/sweep.py
1.18KB
yolov5-7.0/utils/loggers/wandb/sweep.yaml
2.41KB
yolov5-7.0/utils/loggers/wandb/wandb_utils.py
27.58KB
yolov5-7.0/utils/loss.py
9.69KB
yolov5-7.0/utils/metrics.py
14.29KB
yolov5-7.0/utils/plots.py
24.69KB
yolov5-7.0/utils/segment/
-
yolov5-7.0/utils/segment/__init__.py
-
yolov5-7.0/utils/segment/augmentations.py
3.67KB
yolov5-7.0/utils/segment/dataloaders.py
13.47KB
yolov5-7.0/utils/segment/general.py
4.82KB
yolov5-7.0/utils/segment/loss.py
8.42KB
yolov5-7.0/utils/segment/metrics.py
5.33KB
yolov5-7.0/utils/segment/plots.py
6.24KB
yolov5-7.0/utils/torch_utils.py
19.18KB
yolov5-7.0/utils/triton.py
3.55KB
yolov5-7.0/val.py
19.81KB
yolov5s-seg.pt
14.87MB

资源内容介绍

yolov5-7.0源码,附yolov5s分割模型权重。yolov5-7.0源码,附yolov5s分割模型权重。yolov5-7.0源码,附yolov5s分割模型权重。yolov5-7.0源码,附yolov5s分割模型权重。yolov5-7.0源码,附yolov5s分割模型权重。yolov5-7.0源码,附yolov5s分割模型权重。yolov5-7.0源码,附yolov5s分割模型权重。yolov5-7.0源码,附yolov5s分割模型权重。yolov5-7.0源码,附yolov5s分割模型权重。yolov5-7.0源码,附yolov5s分割模型权重。yolov5-7.0源码,附yolov5s分割模型权重。yolov5-7.0源码,附yolov5s分割模型权重。yolov5-7.0源码,附yolov5s分割模型权重。
<div align="center"> <p> <a align="center" href="https://ultralytics.com/yolov5" target="_blank"> <img width="850" src="https://raw.githubusercontent.com/ultralytics/assets/master/yolov5/v70/splash.png"></a> </p> English | [简体中文](.github/README_cn.md) <br> <div> <a href="https://github.com/ultralytics/yolov5/actions/workflows/ci-testing.yml"><img src="https://github.com/ultralytics/yolov5/actions/workflows/ci-testing.yml/badge.svg" alt="YOLOv5 CI"></a> <a href="https://zenodo.org/badge/latestdoi/264818686"><img src="https://zenodo.org/badge/264818686.svg" alt="YOLOv5 Citation"></a> <a href="https://hub.docker.com/r/ultralytics/yolov5"><img src="https://img.shields.io/docker/pulls/ultralytics/yolov5?logo=docker" alt="Docker Pulls"></a> <br> <a href="https://bit.ly/yolov5-paperspace-notebook"><img src="https://assets.paperspace.io/img/gradient-badge.svg" alt="Run on Gradient"></a> <a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> <a href="https://www.kaggle.com/ultralytics/yolov5"><img src="https://kaggle.com/static/images/open-in-kaggle.svg" alt="Open In Kaggle"></a> </div> <br> <p> YOLOv5 🚀 is the world's most loved vision AI, representing <a href="https://ultralytics.com">Ultralytics</a> open-source research into future vision AI methods, incorporating lessons learned and best practices evolved over thousands of hours of research and development. <br><br> To request a commercial license please complete the form at <a href="https://ultralytics.com/license">Ultralytics Licensing</a>. <br><br> </p> <div align="center"> <a href="https://github.com/ultralytics" style="text-decoration:none;"> <img src="https://github.com/ultralytics/assets/raw/master/social/logo-social-github.png" width="2%" alt="" /></a> <img src="https://github.com/ultralytics/assets/raw/master/social/logo-transparent.png" width="2%" alt="" /> <a href="https://www.linkedin.com/company/ultralytics" style="text-decoration:none;"> <img src="https://github.com/ultralytics/assets/raw/master/social/logo-social-linkedin.png" width="2%" alt="" /></a> <img src="https://github.com/ultralytics/assets/raw/master/social/logo-transparent.png" width="2%" alt="" /> <a href="https://twitter.com/ultralytics" style="text-decoration:none;"> <img src="https://github.com/ultralytics/assets/raw/master/social/logo-social-twitter.png" width="2%" alt="" /></a> <img src="https://github.com/ultralytics/assets/raw/master/social/logo-transparent.png" width="2%" alt="" /> <a href="https://www.producthunt.com/@glenn_jocher" style="text-decoration:none;"> <img src="https://github.com/ultralytics/assets/raw/master/social/logo-social-producthunt.png" width="2%" alt="" /></a> <img src="https://github.com/ultralytics/assets/raw/master/social/logo-transparent.png" width="2%" alt="" /> <a href="https://youtube.com/ultralytics" style="text-decoration:none;"> <img src="https://github.com/ultralytics/assets/raw/master/social/logo-social-youtube.png" width="2%" alt="" /></a> <img src="https://github.com/ultralytics/assets/raw/master/social/logo-transparent.png" width="2%" alt="" /> <a href="https://www.facebook.com/ultralytics" style="text-decoration:none;"> <img src="https://github.com/ultralytics/assets/raw/master/social/logo-social-facebook.png" width="2%" alt="" /></a> <img src="https://github.com/ultralytics/assets/raw/master/social/logo-transparent.png" width="2%" alt="" /> <a href="https://www.instagram.com/ultralytics/" style="text-decoration:none;"> <img src="https://github.com/ultralytics/assets/raw/master/social/logo-social-instagram.png" width="2%" alt="" /></a> </div></div>## <div align="center">Segmentation ⭐ NEW</div><div align="center"><a align="center" href="https://ultralytics.com/yolov5" target="_blank"><img width="800" src="https://user-images.githubusercontent.com/26833433/203348073-9b85607b-03e2-48e1-a6ba-fe1c1c31749c.png"></a></div>Our new YOLOv5 [release v7.0](https://github.com/ultralytics/yolov5/releases/v7.0) instance segmentation models are the fastest and most accurate in the world, beating all current [SOTA benchmarks](https://paperswithcode.com/sota/real-time-instance-segmentation-on-mscoco). We've made them super simple to train, validate and deploy. See full details in our [Release Notes](https://github.com/ultralytics/yolov5/releases/v7.0) and visit our [YOLOv5 Segmentation Colab Notebook](https://github.com/ultralytics/yolov5/blob/master/segment/tutorial.ipynb) for quickstart tutorials.<details> <summary>Segmentation Checkpoints</summary><br>We trained YOLOv5 segmentations models on COCO for 300 epochs at image size 640 using A100 GPUs. We exported all models to ONNX FP32 for CPU speed tests and to TensorRT FP16 for GPU speed tests. We ran all speed tests on Google [Colab Pro](https://colab.research.google.com/signup) notebooks for easy reproducibility.| Model | size<br><sup>(pixels) | mAP<sup>box<br>50-95 | mAP<sup>mask<br>50-95 | Train time<br><sup>300 epochs<br>A100 (hours) | Speed<br><sup>ONNX CPU<br>(ms) | Speed<br><sup>TRT A100<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>@640 (B) ||----------------------------------------------------------------------------------------------------|-----------------------|----------------------|-----------------------|-----------------------------------------------|--------------------------------|--------------------------------|--------------------|------------------------|| [YOLOv5n-seg](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5n-seg.pt) | 640 | 27.6 | 23.4 | 80:17 | **62.7** | **1.2** | **2.0** | **7.1** || [YOLOv5s-seg](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5s-seg.pt) | 640 | 37.6 | 31.7 | 88:16 | 173.3 | 1.4 | 7.6 | 26.4 || [YOLOv5m-seg](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5m-seg.pt) | 640 | 45.0 | 37.1 | 108:36 | 427.0 | 2.2 | 22.0 | 70.8 || [YOLOv5l-seg](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5l-seg.pt) | 640 | 49.0 | 39.9 | 66:43 (2x) | 857.4 | 2.9 | 47.9 | 147.7 || [YOLOv5x-seg](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5x-seg.pt) | 640 | **50.7** | **41.4** | 62:56 (3x) | 1579.2 | 4.5 | 88.8 | 265.7 |- All checkpoints are trained to 300 epochs with SGD optimizer with `lr0=0.01` and `weight_decay=5e-5` at image size 640 and all default settings.<br>Runs logged to https://wandb.ai/glenn-jocher/YOLOv5_v70_official- **Accuracy** values are for single-model single-scale on COCO dataset.<br>Reproduce by `python segment/val.py --data coco.yaml --weights yolov5s-seg.pt`- **Speed** averaged over 100 inference images using a [Colab Pro](https://colab.research.google.com/signup) A100 High-RAM instance. Values ind

用户评论 (0)

发表评论

captcha