FedAvg-ST-GCN-ice.zip
大小:30.2MB
价格:47积分
下载量:0
评分:
5.0
上传者:2301_80488214
更新日期:2025-09-22

一个联邦平均框架,并基于ST-GCN模型进行实验,在Kinetics和NTU60数据集上验证

资源文件列表(大概)

文件名
大小
FedAvg-ST-GCN-ice/
-
FedAvg-ST-GCN-ice/Client.py
5.34KB
FedAvg-ST-GCN-ice/Feeder.py
2.34KB
FedAvg-ST-GCN-ice/Net_utils.py
11.03KB
FedAvg-ST-GCN-ice/Readme.md
1.14KB
FedAvg-ST-GCN-ice/Server.py
3.88KB
FedAvg-ST-GCN-ice/__pycache__/
-
FedAvg-ST-GCN-ice/__pycache__/Client.cpython-38.pyc
4.76KB
FedAvg-ST-GCN-ice/__pycache__/Client.cpython-39.pyc
4.76KB
FedAvg-ST-GCN-ice/__pycache__/Feeder.cpython-38.pyc
2.03KB
FedAvg-ST-GCN-ice/__pycache__/Feeder.cpython-39.pyc
2.11KB
FedAvg-ST-GCN-ice/__pycache__/Net_utils.cpython-38.pyc
7.54KB
FedAvg-ST-GCN-ice/__pycache__/Net_utils.cpython-39.pyc
7.76KB
FedAvg-ST-GCN-ice/__pycache__/tools.cpython-38.pyc
5.35KB
FedAvg-ST-GCN-ice/__pycache__/tools.cpython-39.pyc
5.36KB
FedAvg-ST-GCN-ice/client_log.txt
-
FedAvg-ST-GCN-ice/feeder_kinetics.py
5.68KB
FedAvg-ST-GCN-ice/main.py
137B
FedAvg-ST-GCN-ice/net/
-
FedAvg-ST-GCN-ice/net/__init__.py
20B
FedAvg-ST-GCN-ice/net/__pycache__/
-
FedAvg-ST-GCN-ice/net/__pycache__/__init__.cpython-312.pyc
185B
FedAvg-ST-GCN-ice/net/__pycache__/__init__.cpython-38.pyc
145B
FedAvg-ST-GCN-ice/net/__pycache__/__init__.cpython-39.pyc
203B
FedAvg-ST-GCN-ice/net/__pycache__/st_gcn.cpython-312.pyc
9.64KB
FedAvg-ST-GCN-ice/net/__pycache__/st_gcn.cpython-38.pyc
6.11KB
FedAvg-ST-GCN-ice/net/__pycache__/st_gcn.cpython-39.pyc
6.18KB
FedAvg-ST-GCN-ice/net/st_gcn.py
6.74KB
FedAvg-ST-GCN-ice/net/st_gcn_twostream.py
789B
FedAvg-ST-GCN-ice/net/utils/
-
FedAvg-ST-GCN-ice/net/utils/__init__.py
-
FedAvg-ST-GCN-ice/net/utils/__pycache__/
-
FedAvg-ST-GCN-ice/net/utils/__pycache__/__init__.cpython-312.pyc
158B
FedAvg-ST-GCN-ice/net/utils/__pycache__/__init__.cpython-38.pyc
121B
FedAvg-ST-GCN-ice/net/utils/__pycache__/__init__.cpython-39.pyc
179B
FedAvg-ST-GCN-ice/net/utils/__pycache__/graph.cpython-312.pyc
8.21KB
FedAvg-ST-GCN-ice/net/utils/__pycache__/graph.cpython-38.pyc
5.46KB
FedAvg-ST-GCN-ice/net/utils/__pycache__/graph.cpython-39.pyc
5.39KB
FedAvg-ST-GCN-ice/net/utils/__pycache__/tgcn.cpython-312.pyc
3.03KB
FedAvg-ST-GCN-ice/net/utils/__pycache__/tgcn.cpython-38.pyc
2.47KB
FedAvg-ST-GCN-ice/net/utils/__pycache__/tgcn.cpython-39.pyc
2.51KB
FedAvg-ST-GCN-ice/net/utils/graph.py
6.28KB
FedAvg-ST-GCN-ice/net/utils/tgcn.py
2.34KB
FedAvg-ST-GCN-ice/ntu_process/
-
FedAvg-ST-GCN-ice/ntu_process/ntu_gendata.py
3.58KB
FedAvg-ST-GCN-ice/ntu_process/ntu_read_skeleton.py
2.13KB
FedAvg-ST-GCN-ice/resource/
-
FedAvg-ST-GCN-ice/resource/NTU-RGB-D/
-
FedAvg-ST-GCN-ice/resource/NTU-RGB-D/samples_with_missing_skeletons.txt
6.19KB
FedAvg-ST-GCN-ice/resource/demo_asset/
-
FedAvg-ST-GCN-ice/resource/demo_asset/attention+prediction.png
7.57KB
FedAvg-ST-GCN-ice/resource/demo_asset/attention+rgb.png
6.05KB
FedAvg-ST-GCN-ice/resource/demo_asset/original_video.png
5.88KB
FedAvg-ST-GCN-ice/resource/demo_asset/pose_estimation.png
6.42KB
FedAvg-ST-GCN-ice/resource/info/
-
FedAvg-ST-GCN-ice/resource/info/S001C001P001R001A044_w.gif
354.64KB
FedAvg-ST-GCN-ice/resource/info/S001C001P001R001A051_w.gif
407.52KB
FedAvg-ST-GCN-ice/resource/info/S002C001P010R001A017_w.gif
672.5KB
FedAvg-ST-GCN-ice/resource/info/S003C001P008R001A002_w.gif
504.01KB
FedAvg-ST-GCN-ice/resource/info/S003C001P008R001A008_w.gif
436.17KB
FedAvg-ST-GCN-ice/resource/info/clean_and_jerk_w.gif
2.18MB
FedAvg-ST-GCN-ice/resource/info/demo_video.gif
5.2MB
FedAvg-ST-GCN-ice/resource/info/hammer_throw_w.gif
1.13MB
FedAvg-ST-GCN-ice/resource/info/juggling_balls_w.gif
1.96MB
FedAvg-ST-GCN-ice/resource/info/pipeline.png
1.13MB
FedAvg-ST-GCN-ice/resource/info/pull_ups_w.gif
2.5MB
FedAvg-ST-GCN-ice/resource/info/tai_chi_w.gif
1.75MB
FedAvg-ST-GCN-ice/resource/kinetics-motion.txt
408B
FedAvg-ST-GCN-ice/resource/kinetics_skeleton/
-
FedAvg-ST-GCN-ice/resource/kinetics_skeleton/label_name.txt
5.82KB
FedAvg-ST-GCN-ice/resource/media/
-
FedAvg-ST-GCN-ice/resource/media/clean_and_jerk.mp4
211.71KB
FedAvg-ST-GCN-ice/resource/media/skateboarding.mp4
1.44MB
FedAvg-ST-GCN-ice/resource/media/ta_chi.mp4
133.78KB
FedAvg-ST-GCN-ice/resource/reference_model.txt
57B
FedAvg-ST-GCN-ice/resource/数据集组织结构.png
152.89KB
FedAvg-ST-GCN-ice/scratch.ipynb
622.17KB
FedAvg-ST-GCN-ice/server_log.txt
-
FedAvg-ST-GCN-ice/tmp.pt
11.9MB
FedAvg-ST-GCN-ice/tools.py
6.23KB

资源内容介绍

通信模型: NOTE:分成两个循环: 客户端 listen -> 接收模型 -> 训练一个epoch -> 发起通信 -> 上传模型 -> (重复)listen 服务器 发起通信 -> 下放模型 -> listen -> 接收模型 -> 聚合 ->(重复)发起通信
# fedavg + st_gcn### 运行方式:1. 创建一个虚拟环境,这里用的是python3.8,按照[GitHub - wanjinchang/st-gcn: Spatial Temporal Graph Convolutional Networks (ST-GCN) for Skeleton-Based Action Recognition in PyTorch](https://github.com/wanjinchang/st-gcn) 的requirements,配置st-gcn所需环境 ``` git clone https://github.com/yysijie/st-gcn.git cd st-gcn pip install -r requirements.txt ``` 接着自行配置torch和GPU2. 克隆本仓库代码: ``` git clone https://github.com/Duanice/FedAvg-ST-GCN.git ``` 数据集按照下图组织: ![数据集组织结构](resource/数据集组织结构.png)4. 联邦训练:对于Kinetics数据集需要重新配置Server和Client的参数,参考st-gcn源码config文件夹下的yaml文件修改即可。在fl_st目录运行: ``` python Server.py ```### 通信模型: NOTE:分成两个循环: 客户端 listen -> 接收模型 -> 训练一个epoch -> 发起通信 -> 上传模型 -> (重复)listen 服务器 发起通信 -> 下放模型 -> listen -> 接收模型 -> 聚合 -> (重复)发起通信

用户评论 (0)

发表评论

captcha