下载资源后端资源详情
1.hyperparameter-tuning-cv.zip
大小:52.98MB
价格:33积分
下载量:0
评分:
5.0
上传者:weixin_43271399
更新日期:2024-09-03

 1.使用scikit-learn(GridSearchCV)进行网格搜索超参数调整(Python代码,包括数据集)

资源文件列表(大概)

文件名
大小
hyperparameter-tuning-cv/
-
hyperparameter-tuning-cv/pyimagesearch/
-
hyperparameter-tuning-cv/train_model.py
2.55KB
hyperparameter-tuning-cv/texture_dataset/
-
hyperparameter-tuning-cv/texture_dataset/sand/
-
hyperparameter-tuning-cv/texture_dataset/brick/
-
hyperparameter-tuning-cv/texture_dataset/marble/
-
hyperparameter-tuning-cv/pyimagesearch/__init__.py
-
hyperparameter-tuning-cv/texture_dataset/sand/00000019.jpg
168.14KB
hyperparameter-tuning-cv/texture_dataset/sand/00000006.jpg
1MB
hyperparameter-tuning-cv/texture_dataset/sand/00000020.jpg
242.68KB
hyperparameter-tuning-cv/texture_dataset/sand/00000023.jpg
47.42KB
hyperparameter-tuning-cv/texture_dataset/sand/00000003.jpg
2.38MB
hyperparameter-tuning-cv/texture_dataset/sand/00000010.jpg
249.86KB
hyperparameter-tuning-cv/texture_dataset/sand/00000009.jpg
3.91MB
hyperparameter-tuning-cv/texture_dataset/sand/00000033.jpg
3.25MB
hyperparameter-tuning-cv/texture_dataset/sand/00000001.jpg
229.3KB
hyperparameter-tuning-cv/texture_dataset/sand/00000032.jpg
102.42KB
hyperparameter-tuning-cv/texture_dataset/sand/00000013.jpg
232.24KB
hyperparameter-tuning-cv/texture_dataset/sand/00000018.jpg
60.75KB
hyperparameter-tuning-cv/texture_dataset/sand/00000025.jpg
107.52KB
hyperparameter-tuning-cv/texture_dataset/sand/00000012.jpg
119.29KB
hyperparameter-tuning-cv/texture_dataset/sand/00000015.jpg
60.07KB
hyperparameter-tuning-cv/texture_dataset/sand/00000016.jpg
177.74KB
hyperparameter-tuning-cv/texture_dataset/sand/00000035.jpg
112.75KB
hyperparameter-tuning-cv/texture_dataset/sand/00000007.jpg
112.6KB
hyperparameter-tuning-cv/texture_dataset/sand/00000030.jpg
135.79KB
hyperparameter-tuning-cv/texture_dataset/sand/00000011.jpg
60.34KB
hyperparameter-tuning-cv/texture_dataset/sand/00000014.jpg
8.28MB
hyperparameter-tuning-cv/texture_dataset/sand/00000034.jpg
563.85KB
hyperparameter-tuning-cv/texture_dataset/sand/00000000.jpg
340.7KB
hyperparameter-tuning-cv/texture_dataset/sand/00000029.jpg
912.82KB
hyperparameter-tuning-cv/texture_dataset/sand/00000024.jpg
137.78KB
hyperparameter-tuning-cv/texture_dataset/sand/00000021.jpg
293.16KB
hyperparameter-tuning-cv/texture_dataset/sand/00000005.jpg
7.04MB
hyperparameter-tuning-cv/texture_dataset/sand/00000028.jpg
3.24MB
hyperparameter-tuning-cv/texture_dataset/sand/00000026.jpg
245.84KB
hyperparameter-tuning-cv/texture_dataset/sand/00000004.jpg
334.93KB
hyperparameter-tuning-cv/texture_dataset/brick/00000025.jpg
137.75KB
hyperparameter-tuning-cv/texture_dataset/brick/00000005.jpg
132.02KB
hyperparameter-tuning-cv/texture_dataset/brick/00000002.jpg
355.66KB
hyperparameter-tuning-cv/texture_dataset/brick/00000035.jpg
28.95KB
hyperparameter-tuning-cv/texture_dataset/brick/00000006.jpg
67.68KB
hyperparameter-tuning-cv/texture_dataset/brick/00000016.jpg
243.44KB
hyperparameter-tuning-cv/texture_dataset/brick/00000022.jpg
204.52KB
hyperparameter-tuning-cv/texture_dataset/brick/00000033.jpg
204.73KB
hyperparameter-tuning-cv/texture_dataset/brick/00000038.jpg
35.82KB
hyperparameter-tuning-cv/texture_dataset/brick/00000001.jpg
180.65KB
hyperparameter-tuning-cv/texture_dataset/brick/00000009.jpg
76.15KB
hyperparameter-tuning-cv/texture_dataset/brick/00000037.jpg
47.22KB
hyperparameter-tuning-cv/texture_dataset/brick/00000013.jpg
291.15KB
hyperparameter-tuning-cv/texture_dataset/brick/00000020.jpg
150.57KB
hyperparameter-tuning-cv/texture_dataset/brick/00000015.jpg
131.58KB
hyperparameter-tuning-cv/texture_dataset/brick/00000023.jpg
1.51MB
hyperparameter-tuning-cv/texture_dataset/brick/00000027.jpg
75.31KB
hyperparameter-tuning-cv/texture_dataset/brick/00000011.jpg
854.4KB
hyperparameter-tuning-cv/texture_dataset/brick/00000019.jpg
2.65MB
hyperparameter-tuning-cv/texture_dataset/brick/00000012.jpg
1.96MB
hyperparameter-tuning-cv/texture_dataset/brick/00000029.jpg
18.89KB
hyperparameter-tuning-cv/texture_dataset/brick/00000032.jpg
98.84KB
hyperparameter-tuning-cv/texture_dataset/brick/00000040.jpg
194.06KB
hyperparameter-tuning-cv/texture_dataset/brick/00000017.jpg
239.46KB
hyperparameter-tuning-cv/texture_dataset/brick/00000021.jpg
90.83KB
hyperparameter-tuning-cv/texture_dataset/brick/00000008.jpg
1.55MB
hyperparameter-tuning-cv/texture_dataset/brick/00000000.jpg
1.2MB
hyperparameter-tuning-cv/texture_dataset/brick/00000030.jpg
63.51KB
hyperparameter-tuning-cv/texture_dataset/brick/00000007.jpg
808.26KB
hyperparameter-tuning-cv/texture_dataset/brick/00000014.jpg
236.8KB
hyperparameter-tuning-cv/texture_dataset/marble/00000026.jpg
29.19KB
hyperparameter-tuning-cv/texture_dataset/marble/00000029.jpg
64.53KB
hyperparameter-tuning-cv/texture_dataset/marble/00000002.jpg
83.8KB
hyperparameter-tuning-cv/texture_dataset/marble/00000012.jpg
9.49KB
hyperparameter-tuning-cv/texture_dataset/marble/00000037.jpg
55.13KB
hyperparameter-tuning-cv/texture_dataset/marble/00000009.jpg
25.73KB
hyperparameter-tuning-cv/texture_dataset/marble/00000001.jpg
24.07KB
hyperparameter-tuning-cv/texture_dataset/marble/00000040.jpg
11.69KB
hyperparameter-tuning-cv/texture_dataset/marble/00000043.jpg
19.23KB
hyperparameter-tuning-cv/texture_dataset/marble/00000038.jpg
83.67KB
hyperparameter-tuning-cv/texture_dataset/marble/00000007.jpg
174.38KB
hyperparameter-tuning-cv/texture_dataset/marble/00000005.jpg
40.22KB
hyperparameter-tuning-cv/texture_dataset/marble/00000016.jpg
92.63KB
hyperparameter-tuning-cv/texture_dataset/marble/00000008.jpg
35.1KB
hyperparameter-tuning-cv/texture_dataset/marble/00000004.jpg
13.54KB
hyperparameter-tuning-cv/texture_dataset/marble/00000034.jpg
8.33KB
hyperparameter-tuning-cv/texture_dataset/marble/00000018.jpg
95.76KB
hyperparameter-tuning-cv/texture_dataset/marble/00000010.jpg
33.57KB
hyperparameter-tuning-cv/texture_dataset/marble/00000031.jpg
38.93KB
hyperparameter-tuning-cv/texture_dataset/marble/00000039.jpg
109.3KB
hyperparameter-tuning-cv/texture_dataset/marble/00000006.jpg
30.87KB
hyperparameter-tuning-cv/texture_dataset/marble/00000003.jpg
733.67KB
hyperparameter-tuning-cv/texture_dataset/marble/00000030.jpg
2.19MB
hyperparameter-tuning-cv/texture_dataset/marble/00000022.jpg
306.87KB
hyperparameter-tuning-cv/texture_dataset/marble/00000027.jpg
13.22KB
hyperparameter-tuning-cv/texture_dataset/marble/00000021.jpg
34.57KB
hyperparameter-tuning-cv/texture_dataset/marble/00000014.jpg
848.03KB
hyperparameter-tuning-cv/texture_dataset/marble/00000000.jpg
28.52KB
hyperparameter-tuning-cv/texture_dataset/marble/00000020.jpg
14.63KB
hyperparameter-tuning-cv/texture_dataset/marble/00000044.jpg
22.01KB
hyperparameter-tuning-cv/pyimagesearch/localbinarypatterns.py
787B

资源内容介绍

在本教程中,您将学习如何使用该类GridSearchCV通过 scikit-learn 机器学习库进行网格搜索超参数调整。我们将网格搜索应用于计算机视觉项目。我们将讨论:1.什么是网格搜索2.如何将网格搜索应用于超参数调整3.scikit-learn 机器学习库如何通过网格搜索从那里,我们将配置我们的开发环境并检查我们的项目目录结构。然后,我将向您展示如何使用计算机视觉、机器学习和网格搜索超参数调整来将参数调整到纹理识别管道,从而产生一个接近 100% 纹理识别准确率的系统。
# USAGE# python train_model.py --dataset texture_dataset# import the necessary packagesfrom pyimagesearch.localbinarypatterns import LocalBinaryPatternsfrom sklearn.model_selection import GridSearchCVfrom sklearn.metrics import classification_reportfrom sklearn.svm import SVCfrom sklearn.model_selection import train_test_splitfrom imutils import pathsimport argparseimport timeimport cv2import os# construct the argument parser and parse the argumentsap = argparse.ArgumentParser()ap.add_argument("-d", "--dataset", required=True,help="path to input dataset")args = vars(ap.parse_args())# grab the image paths in the input dataset directoryimagePaths = list(paths.list_images(args["dataset"]))# initialize the local binary patterns descriptor along with# the data and label listsprint("[INFO] extracting features...")desc = LocalBinaryPatterns(24, 8)data = []labels = []# loop over the dataset of imagesfor imagePath in imagePaths:# load the image, convert it to grayscale, and quantify it# using LBPsimage = cv2.imread(imagePath)gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)hist = desc.describe(gray)# extract the label from the image path, then update the# label and data listslabels.append(imagePath.split(os.path.sep)[-2])data.append(hist)# partition the data into training and testing splits using 75% of# the data for training and the remaining 25% for testingprint("[INFO] constructing training/testing split...")(trainX, testX, trainY, testY) = train_test_split(data, labels,random_state=22, test_size=0.25)# construct the set of hyperparameters to tuneparameters = [{"kernel":["linear"],"C": [0.0001, 0.001, 0.1, 1, 10, 100, 1000]},{"kernel":["poly"],"degree": [2, 3, 4],"C": [0.0001, 0.001, 0.1, 1, 10, 100, 1000]},{"kernel":["rbf"],"gamma": ["auto", "scale"],"C": [0.0001, 0.001, 0.1, 1, 10, 100, 1000]}]# tune the hyperparameters via a cross-validated grid searchprint("[INFO] tuning hyperparameters via grid search")grid = GridSearchCV(estimator=SVC(), param_grid=parameters, n_jobs=-1)start = time.time()grid.fit(trainX, trainY)end = time.time()# show the grid search informationprint("[INFO] grid search took {:.2f} seconds".format(end - start))print("[INFO] grid search best score: {:.2f}%".format(grid.best_score_ * 100))print("[INFO] grid search best parameters: {}".format(grid.best_params_))# grab the best model and evaluate itprint("[INFO] evaluating...")model = grid.best_estimator_predictions = model.predict(testX)print(classification_report(testY, predictions))

用户评论 (0)

发表评论

captcha

相关资源

2.使用scikit-learn和Python进行超参数调整(Python代码,包括数据集)

在本教程中,您将学习如何使用 scikit-learn 和 Python 调整模型超参数。我们将从讨论什么是超参数调整以及它为什么如此重要来开始本教程。从那里,我们将配置您的开发环境并检查项目目录结构。然后我们将执行三个 Python 脚本:1.无需调整超参数即可训练模型(这样我们就可以获得基线)2.一种是利用一种称为“网格搜索”的算法来详尽检查所有超参数组合的方法——这种方法保证对超参数值进行全面扫描,但速度也很慢3.最后一种方法是使用“随机搜索”,从分布中抽取各种超参数(不能保证覆盖所有超参数值,但在实践中通常与网格搜索一样准确,而且运行速度更快)

148.73KB29积分

CSDN新客户端.zip

CSDN新客户端.zip

22.79MB33积分

stylus-1.5.51.zip

Stylus是一款能改变网站样式的样式管理器

1.35MB15积分

基于协同过滤算法的小说推荐系统的设计与实现.zip

基于协同过滤算法的小说推荐系统的设计与实现+源代码+文档说明+PPT(毕业设计),本资源中的源码都是经过本地编译过可运行的,通过毕业答辩得分90以上。基于协同过滤算法的小说推荐系统的设计与实现+源代码+文档说明+PPT(毕业设计)基于协同过滤算法的小说推荐系统的设计与实现+源代码+文档说明+PPT(毕业设计)基于协同过滤算法的小说推荐系统的设计与实现+源代码+文档说明+PPT(毕业设计)基于协同过滤算法的小说推荐系统的设计与实现+源代码+文档说明+PPT(毕业设计)基于协同过滤算法的小说推荐系统的设计与实现+源代码+文档说明+PPT(毕业设计)基于协同过滤算法的小说推荐系统的设计与实现+源代码+文档说明+PPT(毕业设计)基于协同过滤算法的小说推荐系统的设计与实现+源代码+文档说明+PPT(毕业设计)基于协同过滤算法的小说推荐系统的设计与实现+源代码+文档说明+PPT(毕业设计)基于协同过滤算法的小说推荐系统的设计与实现+源代码+文档说明+PPT(毕业设计)基于协同过滤算法的小说推荐系统的设计与实现+源代码+文档说明+PPT(毕业设计)基于协同过滤算法的小说推荐系统的设计

21.8MB10积分