RMTL-main.zip
大小:10.51MB
价格:37积分
下载量:0
评分:
5.0
上传者:github_33890647
更新日期:2025-09-22

无标题代码代码代码代码代码

资源文件列表(大概)

文件名
大小
RMTL-main/
-
RMTL-main/Framework.pdf
27.27KB
RMTL-main/README.md
2.16KB
RMTL-main/RLmain.py
1.4KB
RMTL-main/SLmain.py
7.99KB
RMTL-main/agents/
-
RMTL-main/agents/DDPG_ESMM.py
12.81KB
RMTL-main/agents/DDPG_ESMM_BC.py
7.81KB
RMTL-main/agents/ReplayBuffer.py
1.72KB
RMTL-main/agents/__pycache__/
-
RMTL-main/agents/__pycache__/DDPG_ESMM.cpython-38.pyc
8.87KB
RMTL-main/agents/__pycache__/DDPG_ESMM_BC.cpython-38.pyc
5.17KB
RMTL-main/agents/__pycache__/ReplayBuffer.cpython-38.pyc
1.76KB
RMTL-main/doc.md
8.15KB
RMTL-main/env.py
6.12KB
RMTL-main/layers/
-
RMTL-main/layers/__pycache__/
-
RMTL-main/layers/__pycache__/critic.cpython-38.pyc
2.04KB
RMTL-main/layers/__pycache__/layers.cpython-38.pyc
1.77KB
RMTL-main/layers/critic.py
2.39KB
RMTL-main/layers/esmm.py
1.7KB
RMTL-main/layers/layers.py
1.3KB
RMTL-main/pretrain.zip
10.5MB
RMTL-main/slmodels/
-
RMTL-main/slmodels/__pycache__/
-
RMTL-main/slmodels/__pycache__/aitm.cpython-38.pyc
2.94KB
RMTL-main/slmodels/__pycache__/esmm.cpython-38.pyc
1.97KB
RMTL-main/slmodels/__pycache__/layers.cpython-38.pyc
1.77KB
RMTL-main/slmodels/__pycache__/mmoe.cpython-38.pyc
2.87KB
RMTL-main/slmodels/__pycache__/omoe.cpython-38.pyc
2.58KB
RMTL-main/slmodels/__pycache__/ple.cpython-38.pyc
3.62KB
RMTL-main/slmodels/__pycache__/sharedbottom.cpython-38.pyc
1.92KB
RMTL-main/slmodels/__pycache__/singletask.cpython-38.pyc
2.22KB
RMTL-main/slmodels/aitm.py
2.5KB
RMTL-main/slmodels/esmm.py
1.7KB
RMTL-main/slmodels/layers.py
1.3KB
RMTL-main/slmodels/metaheac.py
7.94KB
RMTL-main/slmodels/mmoe.py
2.06KB
RMTL-main/slmodels/omoe.py
2.05KB
RMTL-main/slmodels/ple.py
3.8KB
RMTL-main/slmodels/sharedbottom.py
1.43KB
RMTL-main/slmodels/singletask.py
1.63KB
RMTL-main/train/
-
RMTL-main/train/Arguments.py
1.54KB
RMTL-main/train/__pycache__/
-
RMTL-main/train/__pycache__/Arguments.cpython-38.pyc
1.42KB
RMTL-main/train/__pycache__/run.cpython-38.pyc
7.96KB
RMTL-main/train/__pycache__/utils.cpython-38.pyc
7.78KB
RMTL-main/train/run.py
11.62KB
RMTL-main/train/utils.py
9.34KB

资源内容介绍

无标题代码代码代码代码代码
# Multi-Task Recommendations with Reinforcement LearningSource code of [Multi-Task Recommendations with Reinforcement Learning](https://dl.acm.org/doi/10.1145/3543507.3583467)Code for RetailRocket Dataset.**Google Drive link for processed RetailRocket data:** https://drive.google.com/file/d/1THRWKttdpmcNaEc1DtKwxgYlV8RLMtV5/view?usp=sharing# Model Code+ layers: stores common network structures + critic: critic network + esmm: esmm(actor) network, can introduce other MTL models as actor inside slmodels + layers: classical Embedding layers and MLP layers+ slmodels: SL baseline models+ agents: RL models+ train: training-related configuration+ env.py: offline sampling simulation environment+ RLmain.py: main RL training program+ SLmain.py: SL training main program+ dataset + rtrl:retrailrocket dataset(Convert to MDP format:)[timestamp,sessionid,itemid,pay,click], [itemid,feature1,feature2,..],6:2:2# How to run it## MTL baselinespython3 SLmain.py --model_name=esmm## RMTLpython3 RLmain.pypython3 SLmain.py --model_name=esmm --polish=1## Result:test: best auc: 0.732444172986328100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 134/134 [00:07<00:00, 19.14it/s]task 0, AUC 0.7273702846096346, Log-loss 0.20675417715656488task 1, AUC 0.7247954179346048, Log-loss 0.048957254763240504 # Citation:Please cite with the below bibTex if you find it helpful to your research.```@inproceedings{liu2023multi, title={Multi-Task Recommendations with Reinforcement Learning}, author={Liu, Ziru and Tian, Jiejie and Cai, Qingpeng and Zhao, Xiangyu and Gao, Jingtong and Liu, Shuchang and Chen, Dayou and He, Tonghao and Zheng, Dong and Jiang, Peng and others}, booktitle={Proceedings of the ACM Web Conference 2023}, pages={1273--1282}, year={2023}}```

用户评论 (0)

发表评论

captcha