第二阶段:机器学习经典算法-01回归算法-5.逻辑回归原理
资源文件列表(大概)
资源内容介绍
该视频主要讲述了逻辑回归中的Sigmoid函数。首先介绍了Sigmoid函数是一个S型函数,其输入是任意的实数,输出是0到1之间的值,可以看作是一个概率值。然后提到了在回归问题中,可以通过某种方式得到一个预测值,如果想要将这个预测值转化为分类任务的结果,就可以使用Sigmoid函数。将预测值传入Sigmoid函数后,会得到一个0到1之间的值,这个值可以解释为某个事件发生的概率。此外还强调了Sigmoid函数的取值范围和作用,以及它在神经网络中的应用。逻辑回归原理与Sigmoid函数1.逻辑回归通过Sigmoid函数进行概率转换,实现从连续值到概率的映射。2.Sigmoid函数将任意实数值映射到0到1的区间,可用于将输出转换为概率。3.逻辑回归虽名为回归,但实际上是一种分类算法,适用于二分类问题。04:30逻辑回归的数学表达与推导1.逻辑回归的数学表达式包括Sigmoid函数,用于预测值的计算。2.预测值通过逻辑回归模型的参数(如西塔和x)计算得出,反映属于正类的概率。3.逻辑回归的推导与线性回归相似,涉及求导等数学运算。用户评论 (0)
发表评论
相关资源
第二阶段:机器学习经典算法-01回归算法-6.梯度下降实例
该视频主要讲述了梯度下降算法在机器学习中的应用。首先介绍了如何通过计算损失函数值和偏导数来优化模型参数,然后详细讲解了如何计算目标函数对参数的偏导数以及如何设置合适的学习率。视频强调了学习率的重要性,并介绍了梯度下降算法的迭代求解过程,最后通过具体例子展示了梯度下降算法的应用。该视频对于理解梯度下降算法的基本原理和应用具有一定的帮助,对于初学者来说是一个很好的学习资源。梯度下降实例分析与代码解释1.通过分析PGA数据,使用梯度下降法寻找最佳参数组合以接近y与distance之间的关系。09:44梯度下降法的实现细节1.迭代求解和损失函数的打印、存储及收敛值的控制方法,通过定义收敛值来控制迭代过程。2.梯度下降法的应用,包括计算方法和参数调整过程。10:34梯度下降算法介绍1.梯度下降是一种优化算法,用于找到函数的最小值。2.在梯度下降中,通过计算函数梯度并朝着梯度相反的方向更新参数,以逐步降低函数值。3.梯度下降常用于机器学习和深度学习中,用于优化模型参数。
apache-maven zip包
Apache Maven 是一个强大的项目管理和构建自动化工具,它基于项目对象模型(POM)的概念,允许开发者通过一个简单的声明式配置文件(通常是 pom.xml)来管理项目的构建、报告和文档, 提供免费版本 maven zip包下载
redis安装包和工具
redis安装包和工具
Linux内核技术源代码
内容概要: 《Linux内核技术源代码》压缩包包含了完整的Linux内核源代码,适用于深入学习和研究Linux内核技术的用户。通过对源代码的分析和理解,用户可以掌握Linux内核的工作原理、架构设计以及实现细节。适用人群:对操作系统内核开发感兴趣的初学者希望深入了解Linux内核架构的专业人士从事操作系统开发、嵌入式系统开发的工程师计算机科学相关专业的学生和研究人员使用场景及目标:学习提升:帮助读者系统学习Linux内核知识,提升专业技能。工作参考:为从事操作系统和嵌入式系统开发的人员提供实用的参考资料,解决实际工作中的问题。项目开发:为开发者提供Linux内核技术的详细指导,助力项目开发。学术研究:为计算机科学相关专业的学生和研究人员提供深入的学习资料,支持学术研究。其他说明:格式:本压缩包包含完整的Linux内核源代码,兼容多种开发环境。更新:源代码将定期更新,确保内容的时效性和准确性。支持:如有任何问题或建议,欢迎通过CSDN平台与作者联系。