基于正则化极限学习机(RELM)的数据回归预测matlab代码

YEitCspLcCRZIP基于正则化极限学习机的数据回归预测代码.zip  623.36KB

资源文件列表:

ZIP 基于正则化极限学习机的数据回归预测代码.zip 大约有9个文件
  1. 1.jpg 373.62KB
  2. 2.jpg 314.97KB
  3. 基于正则化极限学习机的数据回.txt 101B
  4. 基于正则化极限学习机的数据回归预测.txt 2.43KB
  5. 基于正则化极限学习机的数据回归预测一引.txt 1.97KB
  6. 基于正则化极限学习机的数据回归预测代码.html 4.21KB
  7. 基于正则化极限学习机的数据回归预测代码详解一引言在.txt 2.18KB
  8. 基于正则化极限学习机的数据回归预测方法近年.txt 1.56KB
  9. 基于正则化极限学习机的数据回归预测概.doc 2.22KB

资源介绍:

基于正则化极限学习机(RELM)的数据回归预测 matlab代码

<link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/css/base.min.css" rel="stylesheet"/><link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/css/fancy.min.css" rel="stylesheet"/><link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/89763277/raw.css" rel="stylesheet"/><div id="sidebar" style="display: none"><div id="outline"></div></div><div class="pf w0 h0" data-page-no="1" id="pf1"><div class="pc pc1 w0 h0"><img alt="" class="bi x0 y0 w1 h1" src="/image.php?url=https://csdnimg.cn/release/download_crawler_static/89763277/bg1.jpg"/><div class="t m0 x1 h2 y1 ff1 fs0 fc0 sc0 ls0 ws0">基于正则化极限学习机<span class="ff2">(RELM)</span>的数据回归预测</div><div class="t m0 x1 h2 y2 ff1 fs0 fc0 sc0 ls0 ws0">概述<span class="ff3">:</span></div><div class="t m0 x1 h2 y3 ff1 fs0 fc0 sc0 ls0 ws0">数据回归预测是计算机科学领域中重要的任务之一<span class="ff3">,</span>可以应用于多种领域<span class="ff3">,</span>例如金融<span class="ff4">、</span>医疗等<span class="ff4">。</span>在过</div><div class="t m0 x1 h2 y4 ff1 fs0 fc0 sc0 ls0 ws0">去的几十年中<span class="ff3">,</span>研究人员提出了各种机器学习算法来解决这个问题<span class="ff4">。</span>正则化极限学习机<span class="ff2">(RELM)</span>是一</div><div class="t m0 x1 h2 y5 ff1 fs0 fc0 sc0 ls0 ws0">种在数据回归预测中表现出色的机器学习模型<span class="ff4">。</span>本文将介绍<span class="_ _0"> </span><span class="ff2">RELM<span class="_ _1"> </span></span>的原理和应用<span class="ff3">,</span>并使用<span class="_ _0"> </span><span class="ff2">Matlab<span class="_ _1"> </span></span>代</div><div class="t m0 x1 h2 y6 ff1 fs0 fc0 sc0 ls0 ws0">码对其进行实现<span class="ff4">。</span></div><div class="t m0 x1 h2 y7 ff1 fs0 fc0 sc0 ls0 ws0">正则化极限学习机<span class="ff2">(RELM)</span>的原理<span class="ff3">:</span></div><div class="t m0 x1 h2 y8 ff1 fs0 fc0 sc0 ls0 ws0">正则化极限学习机<span class="ff2">(RELM)</span>是极限学习机<span class="ff2">(ELM)</span>的扩展版本<span class="ff4">。<span class="ff2">ELM<span class="_ _1"> </span></span></span>是一种单隐藏层前馈神经网络</div><div class="t m0 x1 h2 y9 ff2 fs0 fc0 sc0 ls0 ws0">(SLFNN)<span class="ff1">的机器学习模型<span class="ff3">,</span>其特点是快速训练速度和良好的泛化性能<span class="ff4">。</span></span>RELM<span class="_ _1"> </span><span class="ff1">通过引入正则化项来进</span></div><div class="t m0 x1 h2 ya ff1 fs0 fc0 sc0 ls0 ws0">一步提高<span class="_ _0"> </span><span class="ff2">ELM<span class="_ _1"> </span></span>的泛化性能<span class="ff4">。</span></div><div class="t m0 x1 h2 yb ff2 fs0 fc0 sc0 ls0 ws0">RELM<span class="_ _1"> </span><span class="ff1">的训练过程如下<span class="ff3">:</span></span></div><div class="t m0 x1 h2 yc ff2 fs0 fc0 sc0 ls0 ws0">1.<span class="_ _2"> </span><span class="ff1">将输入数据与随机生成的权重矩阵相乘<span class="ff3">,</span>并通过一个激活函数得到隐藏层的输出<span class="ff4">。</span></span></div><div class="t m0 x1 h2 yd ff2 fs0 fc0 sc0 ls0 ws0">2.<span class="_ _2"> </span><span class="ff1">使用线性回归方法学习输出权重矩阵<span class="ff3">,</span>以最小化输出误差<span class="ff4">。</span></span></div><div class="t m0 x1 h2 ye ff2 fs0 fc0 sc0 ls0 ws0">3.<span class="_ _2"> </span><span class="ff1">引入正则化项<span class="ff3">,</span>使用交叉验证方法找到最优的正则化参数<span class="ff4">。</span></span></div><div class="t m0 x1 h2 yf ff2 fs0 fc0 sc0 ls0 ws0">RELM<span class="_ _1"> </span><span class="ff1">的优点<span class="ff3">:</span></span></div><div class="t m0 x1 h2 y10 ff2 fs0 fc0 sc0 ls0 ws0">1.<span class="_ _2"> </span><span class="ff1">快速训练速度<span class="ff3">:</span></span>RELM<span class="_ _1"> </span><span class="ff1">的训练速度较快<span class="ff3">,</span>可以在大规模数据集上进行高效的训练<span class="ff4">。</span></span></div><div class="t m0 x1 h2 y11 ff2 fs0 fc0 sc0 ls0 ws0">2.<span class="_ _2"> </span><span class="ff1">良好的泛化性能<span class="ff3">:</span></span>RELM<span class="_ _1"> </span><span class="ff1">通过引入正则化项<span class="ff3">,</span>可以有效地防止过拟合现象<span class="ff3">,</span>提高模型的泛化性能</span></div><div class="t m0 x2 h3 y12 ff4 fs0 fc0 sc0 ls0 ws0">。</div><div class="t m0 x1 h2 y13 ff2 fs0 fc0 sc0 ls0 ws0">3.<span class="_ _2"> </span><span class="ff1">高维数据处理<span class="ff3">:</span></span>RELM<span class="_ _1"> </span><span class="ff1">可以有效地处理高维度的数据<span class="ff3">,</span>适用于各种复杂的预测任务<span class="ff4">。</span></span></div><div class="t m0 x1 h2 y14 ff2 fs0 fc0 sc0 ls0 ws0">RELM<span class="_ _1"> </span><span class="ff1">的应用<span class="ff3">:</span></span></div><div class="t m0 x1 h2 y15 ff2 fs0 fc0 sc0 ls0 ws0">1.<span class="_ _2"> </span><span class="ff1">金融预测<span class="ff3">:</span></span>RELM<span class="_ _1"> </span><span class="ff1">可以应用于股票市场预测<span class="ff4">、</span>外汇市场分析等金融领域的预测任务<span class="ff3">,</span>通过学习历</span></div><div class="t m0 x2 h2 y16 ff1 fs0 fc0 sc0 ls0 ws0">史数据并结合技术指标<span class="ff3">,</span>预测未来的趋势和走势<span class="ff4">。</span></div><div class="t m0 x1 h2 y17 ff2 fs0 fc0 sc0 ls0 ws0">2.<span class="_ _2"> </span><span class="ff1">医疗诊断<span class="ff3">:</span></span>RELM<span class="_ _1"> </span><span class="ff1">可以应用于医疗领域<span class="ff3">,</span>通过学习患者的病历数据和检测指标<span class="ff3">,</span>预测患者的疾病</span></div><div class="t m0 x2 h2 y18 ff1 fs0 fc0 sc0 ls0 ws0">类型<span class="ff4">、</span>预后等关键信息<span class="ff3">,</span>帮助医生进行准确的诊断和治疗<span class="ff4">。</span></div><div class="t m0 x1 h2 y19 ff2 fs0 fc0 sc0 ls0 ws0">3.<span class="_ _2"> </span><span class="ff1">工业生产<span class="ff3">:</span></span>RELM<span class="_ _1"> </span><span class="ff1">可以应用于工业生产领域<span class="ff3">,</span>通过学习历史的监测数据和工艺参数<span class="ff3">,</span>预测设备的</span></div><div class="t m0 x2 h2 y1a ff1 fs0 fc0 sc0 ls0 ws0">故障状态和生产效率<span class="ff3">,</span>实现设备维护和生产优化<span class="ff4">。</span></div><div class="t m0 x1 h2 y1b ff2 fs0 fc0 sc0 ls0 ws0">Matlab<span class="_ _1"> </span><span class="ff1">代码实现<span class="ff3">:</span></span></div><div class="t m0 x1 h2 y1c ff1 fs0 fc0 sc0 ls0 ws0">以下是使用<span class="_ _0"> </span><span class="ff2">Matlab<span class="_ _1"> </span></span>实现<span class="_ _0"> </span><span class="ff2">RELM<span class="_ _1"> </span></span>的示例代码<span class="ff3">:</span></div><div class="t m0 x1 h4 y1d ff2 fs0 fc0 sc0 ls0 ws0">```matlab</div><div class="t m0 x1 h2 y1e ff2 fs0 fc0 sc0 ls0 ws0">% <span class="ff1">数据准备</span></div><div class="t m0 x1 h2 y1f ff2 fs0 fc0 sc0 ls0 ws0">load data.mat % <span class="ff1">加载数据集</span></div></div><div class="pi" data-data='{"ctm":[1.568627,0.000000,0.000000,1.568627,0.000000,0.000000]}'></div></div>
100+评论
captcha