ZIPMatlab 车辆配送路径规划问题四大算法解决旅行商问题(TSP) CVRP CDVRP VRPTWtsp:旅行商问题,寻 539.44KB

KvIWPyopIw

资源文件列表:

车辆配送路径规划问题四大算法解决旅行商问题.zip 大约有15个文件
  1. 1.jpg 101.97KB
  2. 2.jpg 89.27KB
  3. 3.jpg 71.64KB
  4. 4.jpg 174.17KB
  5. 5.jpg 51.71KB
  6. 6.jpg 103.51KB
  7. 7.jpg 77.53KB
  8. 标题车辆配送路径规划问题四大算法解决旅行.doc 2.4KB
  9. 车辆配送路径规划技术分析文章一引言在物流和运输领域.txt 3.3KB
  10. 车辆配送路径规划深入探讨旅行商.txt 2.83KB
  11. 车辆配送路径规划问题四大.txt 346B
  12. 车辆配送路径规划问题四大算.html 5.62KB
  13. 车辆配送路径规划问题在现代物流配送领域.txt 2.12KB
  14. 车辆配送路径规划问题解析四大算法解.txt 2.62KB
  15. 车辆配送路径规划问题随着物流行业的不断发展如何高.txt 1.84KB

资源介绍:

Matlab 车辆配送路径规划问题 四大算法解决旅行商问题(TSP) CVRP CDVRP VRPTW tsp:旅行商问题,寻找最短闭合路径 cvrp:带容量约束的车辆路径规划 dvrp:带距离约束的车辆路径规划 cdvrp:带距离+容量约束的车辆路径规划 vrptw:带距离+容量+时间窗约束的车辆路径规划 源码+详细注释 坐标需求量载重量等数据可以更改
<link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/css/base.min.css" rel="stylesheet"/><link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/css/fancy.min.css" rel="stylesheet"/><link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/89763000/raw.css" rel="stylesheet"/><div id="sidebar" style="display: none"><div id="outline"></div></div><div class="pf w0 h0" data-page-no="1" id="pf1"><div class="pc pc1 w0 h0"><img alt="" class="bi x0 y0 w1 h1" src="/image.php?url=https://csdnimg.cn/release/download_crawler_static/89763000/bg1.jpg"/><div class="t m0 x1 h2 y1 ff1 fs0 fc0 sc0 ls0 ws0">标题<span class="ff2">:<span class="ff3">Matlab<span class="_ _0"> </span></span></span>车辆配送路径规划问题<span class="ff2">:</span>四大算法解决旅行商问题及其变种</div><div class="t m0 x1 h2 y2 ff1 fs0 fc0 sc0 ls0 ws0">摘要<span class="ff2">:</span></div><div class="t m0 x1 h2 y3 ff1 fs0 fc0 sc0 ls0 ws0">本文将介绍在<span class="_ _1"> </span><span class="ff3">Matlab<span class="_ _0"> </span></span>环境下<span class="ff2">,</span>使用四大算法解决车辆配送路径规划问题<span class="ff2">(<span class="ff3">TSP</span>)</span>及其变种<span class="ff2">,</span>包括带</div><div class="t m0 x1 h2 y4 ff1 fs0 fc0 sc0 ls0 ws0">容量约束的车辆路径规划<span class="ff2">(<span class="ff3">CVRP</span>)<span class="ff4">、</span></span>带距离约束的车辆路径规划<span class="ff2">(<span class="ff3">DVRP</span>)<span class="ff4">、</span></span>带距离<span class="ff3">+</span>容量约束的车辆</div><div class="t m0 x1 h2 y5 ff1 fs0 fc0 sc0 ls0 ws0">路径规划<span class="ff2">(<span class="ff3">CDVRP</span>)</span>以及带距离<span class="ff3">+</span>容量<span class="ff3">+</span>时间窗约束的车辆路径规划<span class="ff2">(<span class="ff3">VRPTW</span>)<span class="ff4">。</span></span>本文提供了详细的源</div><div class="t m0 x1 h2 y6 ff1 fs0 fc0 sc0 ls0 ws0">码和注释<span class="ff2">,</span>并可根据需求更改坐标<span class="ff4">、</span>需求量<span class="ff4">、</span>载重量等数据<span class="ff4">。</span></div><div class="t m0 x1 h2 y7 ff1 fs0 fc0 sc0 ls0 ws0">第一章<span class="ff2">:</span>引言</div><div class="t m0 x1 h2 y8 ff3 fs0 fc0 sc0 ls0 ws0">1.1 <span class="ff1">背景</span></div><div class="t m0 x1 h2 y9 ff1 fs0 fc0 sc0 ls0 ws0">车辆配送路径规划问题是在实际物流配送中常遇到的难题之一<span class="ff4">。</span>解决这一问题可以有效提高配送效率</div><div class="t m0 x1 h2 ya ff4 fs0 fc0 sc0 ls0 ws0">、<span class="ff1">降低成本<span class="ff2">,</span>并优化客户满意度</span>。</div><div class="t m0 x1 h2 yb ff3 fs0 fc0 sc0 ls0 ws0">1.2 <span class="ff1">目的</span></div><div class="t m0 x1 h2 yc ff1 fs0 fc0 sc0 ls0 ws0">本文旨在介绍<span class="_ _1"> </span><span class="ff3">Matlab<span class="_ _0"> </span></span>环境下应用四大算法解决旅行商问题及其变种<span class="ff2">,</span>为物流从业者提供实用的解决</div><div class="t m0 x1 h2 yd ff1 fs0 fc0 sc0 ls0 ws0">方案<span class="ff4">。</span></div><div class="t m0 x1 h2 ye ff1 fs0 fc0 sc0 ls0 ws0">第二章<span class="ff2">:</span>旅行商问题<span class="ff2">(<span class="ff3">TSP</span>)</span></div><div class="t m0 x1 h2 yf ff3 fs0 fc0 sc0 ls0 ws0">2.1 <span class="ff1">定义</span></div><div class="t m0 x1 h2 y10 ff1 fs0 fc0 sc0 ls0 ws0">旅行商问题是指在给定城市之间的距离矩阵下<span class="ff2">,</span>寻找一条路径<span class="ff2">,</span>使得旅行商能够从起始城市出发<span class="ff2">,</span>经</div><div class="t m0 x1 h2 y11 ff1 fs0 fc0 sc0 ls0 ws0">过其他城市<span class="ff2">,</span>最终回到起始城市<span class="ff2">,</span>并使得路径总长度最短<span class="ff4">。</span></div><div class="t m0 x1 h2 y12 ff3 fs0 fc0 sc0 ls0 ws0">2.2 TSP<span class="_ _0"> </span><span class="ff1">的解决方法</span></div><div class="t m0 x1 h2 y13 ff1 fs0 fc0 sc0 ls0 ws0">本节介绍了四大经典算法<span class="ff2">(</span>贪心算法<span class="ff4">、</span>回溯算法<span class="ff4">、</span>动态规划算法<span class="ff4">、</span>遗传算法<span class="ff2">)</span>在解决<span class="_ _1"> </span><span class="ff3">TSP<span class="_ _0"> </span></span>问题中的应</div><div class="t m0 x1 h2 y14 ff1 fs0 fc0 sc0 ls0 ws0">用<span class="ff2">,</span>并提供了相应的源码和详细注释<span class="ff4">。</span></div><div class="t m0 x1 h2 y15 ff1 fs0 fc0 sc0 ls0 ws0">第三章<span class="ff2">:</span>带容量约束的车辆路径规划<span class="ff2">(<span class="ff3">CVRP</span>)</span></div><div class="t m0 x1 h2 y16 ff3 fs0 fc0 sc0 ls0 ws0">3.1 <span class="ff1">定义</span></div><div class="t m0 x1 h2 y17 ff3 fs0 fc0 sc0 ls0 ws0">CVRP<span class="_ _0"> </span><span class="ff1">是在<span class="_ _1"> </span></span>TSP<span class="_ _0"> </span><span class="ff1">的基础上增加了车辆的容量约束<span class="ff2">,</span>即每个城市对应的需求量不得超过车辆的装载量<span class="ff4">。</span></span></div><div class="t m0 x1 h2 y18 ff3 fs0 fc0 sc0 ls0 ws0">3.2 CVRP<span class="_ _0"> </span><span class="ff1">的解决方法</span></div><div class="t m0 x1 h2 y19 ff1 fs0 fc0 sc0 ls0 ws0">本节介绍了四大算法在解决<span class="_ _1"> </span><span class="ff3">CVRP<span class="_ _0"> </span></span>问题中的应用<span class="ff2">,</span>并提供了相应的源码和详细注释<span class="ff4">。</span></div><div class="t m0 x1 h2 y1a ff1 fs0 fc0 sc0 ls0 ws0">第四章<span class="ff2">:</span>带距离约束的车辆路径规划<span class="ff2">(<span class="ff3">DVRP</span>)</span></div><div class="t m0 x1 h2 y1b ff3 fs0 fc0 sc0 ls0 ws0">4.1 <span class="ff1">定义</span></div><div class="t m0 x1 h2 y1c ff3 fs0 fc0 sc0 ls0 ws0">DVRP<span class="_ _0"> </span><span class="ff1">是在<span class="_ _1"> </span></span>TSP<span class="_ _0"> </span><span class="ff1">的基础上增加了车辆的距离约束<span class="ff2">,</span>即每个城市之间的距离不得超过车辆的行驶能力<span class="ff4">。</span></span></div><div class="t m0 x1 h2 y1d ff3 fs0 fc0 sc0 ls0 ws0">4.2 DVRP<span class="_ _0"> </span><span class="ff1">的解决方法</span></div></div><div class="pi" data-data='{"ctm":[1.568627,0.000000,0.000000,1.568627,0.000000,0.000000]}'></div></div>
100+评论
captcha
    类型标题大小时间
    ZIP分布式电源优化配置 二阶锥编程方法:采用matlab+yalmip编程,cplex或gurobi作为求解器 主要内容:考虑配411.83KB7月前
    ZIP《图书管理系统》JavaSE:循环、判断27.31KB7月前
    ZIP西门子s7 200smart与3台欧姆龙E5cc温控器通讯控 功能:可以直接应用现场 实现西门子s7 200smart对3台欧姆6.86MB7月前
    ZIPreport ETL .ffff98.71MB7月前
    ZIP交直流混合微网程序matlab采用拉丁超立方抽样和多场景缩减,考虑风光等随机性建模,利用粒子群算法,计算得到三个微网的优化程序685.5KB7月前
    ZIP智能电网中多时段多公司需求响应管理的博弈理论框架利用博弈论建立了一个考虑公司和消费者之间相互作用的多时期多公司需求响应框架346.92KB7月前
    ZIPFX3U使用FB方式,三菱专用指令通讯四台三菱E700变頻器示例程序需要硬件:fx3u fx3s fx3g(ver1.1以上)4.09MB7月前
    ZIP赛灵思FPGA匹配CMV2000,图纸资料425.76KB7月前