基于自抗扰控制器ADRC的永磁同步电机FOC1.转速环采用ADRC,和传统PI进行对比来分析ADRC控制性能的优越性 对AD

UnuRahFwMMZIP基于自抗扰控制器的永磁同步电机转速环采用.zip  128.87KB

资源文件列表:

ZIP 基于自抗扰控制器的永磁同步电机转速环采用.zip 大约有11个文件
  1. 1.jpg 104.1KB
  2. 2.jpg 30.46KB
  3. 3.jpg 31.44KB
  4. 基于自抗扰控制器的永磁同步.html 4.94KB
  5. 基于自抗扰控制器的永磁同步电机.txt 2.17KB
  6. 基于自抗扰控制器的永磁同步电机引言自抗扰控制器作为.txt 2.07KB
  7. 基于自抗扰控制器的永磁同步电机引言自抗扰控制器简称.txt 1.95KB
  8. 基于自抗扰控制器的永磁同步电机技.txt 2.04KB
  9. 基于自抗扰控制器的永磁同步电机技术分析一引言在.txt 2.27KB
  10. 基于自抗扰控制器的永磁同步电机转速环采用和传.txt 301B
  11. 标题基于自抗扰控制器的永磁同步电机控制性能分.doc 2.4KB

资源介绍:

基于自抗扰控制器ADRC的永磁同步电机FOC 1.转速环采用ADRC,和传统PI进行对比来分析ADRC控制性能的优越性。 对ADRC中的ESO进行改进,进一步提高了ADRC性能。 2.提供算法对应的参考文献和仿真模型 仿真模型纯手工搭建,不是从网络上复制得到。 仿真模型仅供学习参考

<link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/css/base.min.css" rel="stylesheet"/><link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/css/fancy.min.css" rel="stylesheet"/><link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/89761917/raw.css" rel="stylesheet"/><div id="sidebar" style="display: none"><div id="outline"></div></div><div class="pf w0 h0" data-page-no="1" id="pf1"><div class="pc pc1 w0 h0"><img alt="" class="bi x0 y0 w1 h1" src="/image.php?url=https://csdnimg.cn/release/download_crawler_static/89761917/bg1.jpg"/><div class="t m0 x1 h2 y1 ff1 fs0 fc0 sc0 ls0 ws0">标题<span class="ff2">:</span>基于自抗扰控制器<span class="_ _0"> </span><span class="ff3">ADRC<span class="_ _1"> </span></span>的永磁同步电机<span class="_ _0"> </span><span class="ff3">FOC<span class="_ _1"> </span></span>控制性能分析</div><div class="t m0 x1 h2 y2 ff1 fs0 fc0 sc0 ls0 ws0">摘要<span class="ff2">:</span>本文通过对比传统<span class="_ _0"> </span><span class="ff3">PI<span class="_ _1"> </span></span>控制器和基于自抗扰控制器<span class="_ _0"> </span><span class="ff3">ADRC<span class="_ _1"> </span></span>的永磁同步电机场向定向控制<span class="ff2">(<span class="ff3">FOC</span>)</span></div><div class="t m0 x1 h2 y3 ff1 fs0 fc0 sc0 ls0 ws0">的转速环性能<span class="ff2">,</span>探讨<span class="_ _0"> </span><span class="ff3">ADRC<span class="_ _1"> </span></span>控制器在<span class="_ _0"> </span><span class="ff3">FOC<span class="_ _1"> </span></span>中的优越性<span class="ff4">。</span>同时<span class="ff2">,</span>对<span class="_ _0"> </span><span class="ff3">ADRC<span class="_ _1"> </span></span>中的扰动估计器<span class="ff2">(<span class="ff3">ESO</span>)</span>进行</div><div class="t m0 x1 h2 y4 ff1 fs0 fc0 sc0 ls0 ws0">改进<span class="ff2">,</span>进一步提高<span class="_ _0"> </span><span class="ff3">ADRC<span class="_ _1"> </span></span>的控制性能<span class="ff4">。</span>最后<span class="ff2">,</span>提供了算法对应的参考文献和手工搭建的仿真模型<span class="ff2">,</span>供</div><div class="t m0 x1 h2 y5 ff1 fs0 fc0 sc0 ls0 ws0">学习参考<span class="ff4">。</span></div><div class="t m0 x1 h2 y6 ff1 fs0 fc0 sc0 ls0 ws0">关键词<span class="ff2">:</span>自抗扰控制器<span class="ff3">(ADRC)<span class="ff2">,</span></span>永磁同步电机<span class="ff3">(PSM)<span class="ff2">,</span></span>场向定向控制<span class="ff3">(FOC)<span class="ff2">,</span></span>转速环<span class="ff2">,</span>扰动估计器</div><div class="t m0 x1 h2 y7 ff3 fs0 fc0 sc0 ls0 ws0">(ESO)<span class="ff2">,<span class="ff1">控制性能</span>,<span class="ff1">仿真模型</span></span></div><div class="t m0 x1 h2 y8 ff3 fs0 fc0 sc0 ls0 ws0">1.<span class="_"> </span><span class="ff1">引言</span></div><div class="t m0 x1 h2 y9 ff1 fs0 fc0 sc0 ls0 ws0">永磁同步电机已经成为许多应用领域的首选<span class="ff2">,</span>它具有高效<span class="ff4">、</span>高功率密度和响应快的特点<span class="ff4">。</span>而在永磁同</div><div class="t m0 x1 h2 ya ff1 fs0 fc0 sc0 ls0 ws0">步电机的控制方法中<span class="ff2">,</span>场向定向控制<span class="ff2">(<span class="ff3">FOC</span>)</span>是一种被广泛采用的方法<span class="ff2">,</span>通过精确控制电机的电流<span class="ff4">、</span></div><div class="t m0 x1 h2 yb ff1 fs0 fc0 sc0 ls0 ws0">转速和转矩<span class="ff2">,</span>实现对永磁同步电机的高性能控制<span class="ff4">。</span></div><div class="t m0 x1 h2 yc ff3 fs0 fc0 sc0 ls0 ws0">2.<span class="_"> </span>FOC<span class="_ _1"> </span><span class="ff1">控制中的传统<span class="_ _0"> </span></span>PI<span class="_ _1"> </span><span class="ff1">控制器与<span class="_ _0"> </span></span>ADRC<span class="_ _1"> </span><span class="ff1">控制器对比分析</span></div><div class="t m0 x1 h2 yd ff1 fs0 fc0 sc0 ls0 ws0">传统<span class="_ _0"> </span><span class="ff3">PI<span class="_ _1"> </span></span>控制器是一种经典的控制方法<span class="ff2">,</span>已经在许多领域得到广泛应用<span class="ff4">。</span>然而<span class="ff2">,</span>在某些场景下<span class="ff2">,<span class="ff3">PI<span class="_ _1"> </span></span></span>控</div><div class="t m0 x1 h2 ye ff1 fs0 fc0 sc0 ls0 ws0">制器可能无法满足对电机控制的高要求<span class="ff4">。</span>针对这一问题<span class="ff2">,</span>基于自抗扰控制器<span class="_ _0"> </span><span class="ff3">ADRC<span class="_ _1"> </span></span>的永磁同步电机</div><div class="t m0 x1 h2 yf ff3 fs0 fc0 sc0 ls0 ws0">FOC<span class="_ _1"> </span><span class="ff1">逐渐受到了关注<span class="ff4">。</span></span></div><div class="t m0 x1 h2 y10 ff1 fs0 fc0 sc0 ls0 ws0">为了分析<span class="_ _0"> </span><span class="ff3">ADRC<span class="_ _1"> </span></span>控制器在转速环中相对于传统<span class="_ _0"> </span><span class="ff3">PI<span class="_ _1"> </span></span>控制器的性能优越性<span class="ff2">,</span>我们进行了对比实验<span class="ff4">。</span>结果</div><div class="t m0 x1 h2 y11 ff1 fs0 fc0 sc0 ls0 ws0">显示<span class="ff2">,</span>相比于<span class="_ _0"> </span><span class="ff3">PI<span class="_ _1"> </span></span>控制器<span class="ff2">,<span class="ff3">ADRC<span class="_ _1"> </span></span></span>控制器具有更好的鲁棒性和抗干扰能力<span class="ff4">。</span>其在转速跟踪精度<span class="ff4">、</span>响应速</div><div class="t m0 x1 h2 y12 ff1 fs0 fc0 sc0 ls0 ws0">度和鲁棒性方面表现出优秀的性能<span class="ff4">。</span></div><div class="t m0 x1 h2 y13 ff3 fs0 fc0 sc0 ls0 ws0">3.<span class="_"> </span>ADRC<span class="_ _1"> </span><span class="ff1">中扰动估计器<span class="ff2">(</span></span>ESO<span class="ff2">)<span class="ff1">的改进及性能提升</span></span></div><div class="t m0 x1 h2 y14 ff3 fs0 fc0 sc0 ls0 ws0">ADRC<span class="_ _1"> </span><span class="ff1">控制器的核心在于扰动估计器<span class="ff2">(</span></span>ESO<span class="ff2">),<span class="ff1">它通过对扰动信号进行估计</span>,<span class="ff1">以实现对扰动的补偿<span class="ff4">。</span>然</span></span></div><div class="t m0 x1 h2 y15 ff1 fs0 fc0 sc0 ls0 ws0">而<span class="ff2">,</span>在实际应用中<span class="ff2">,<span class="ff3">ESO<span class="_ _1"> </span></span></span>的性能可能受到一定的影响<span class="ff4">。</span></div><div class="t m0 x1 h2 y16 ff1 fs0 fc0 sc0 ls0 ws0">为了进一步提高<span class="_ _0"> </span><span class="ff3">ADRC<span class="_ _1"> </span></span>控制器的性能<span class="ff2">,</span>我们对<span class="_ _0"> </span><span class="ff3">ESO<span class="_ _1"> </span></span>进行了改进<span class="ff4">。</span>具体来说<span class="ff2">,</span>我们提出了一种改进的</div><div class="t m0 x1 h2 y17 ff3 fs0 fc0 sc0 ls0 ws0">ESO<span class="_ _1"> </span><span class="ff1">算法<span class="ff2">,</span>通过在<span class="_ _0"> </span></span>ESO<span class="_ _1"> </span><span class="ff1">中引入改进项<span class="ff2">,</span>提高了扰动估计的准确性和鲁棒性<span class="ff4">。</span>仿真结果表明<span class="ff2">,</span>改进的</span></div><div class="t m0 x1 h2 y18 ff3 fs0 fc0 sc0 ls0 ws0">ADRC<span class="_ _1"> </span><span class="ff1">控制器相对于传统<span class="_ _0"> </span></span>ADRC<span class="_ _1"> </span><span class="ff1">控制器<span class="ff2">,</span>在抗干扰性能和跟踪精度方面都有显著的提升<span class="ff4">。</span></span></div><div class="t m0 x1 h2 y19 ff3 fs0 fc0 sc0 ls0 ws0">4.<span class="_"> </span><span class="ff1">算法参考文献和手工搭建的仿真模型</span></div><div class="t m0 x1 h2 y1a ff1 fs0 fc0 sc0 ls0 ws0">为了方便读者进行参考和学习<span class="ff2">,</span>我们提供了<span class="_ _0"> </span><span class="ff3">ADRC<span class="_ _1"> </span></span>控制器在永磁同步电机<span class="_ _0"> </span><span class="ff3">FOC<span class="_ _1"> </span></span>中的相关参考文献<span class="ff4">。</span>这</div><div class="t m0 x1 h2 y1b ff1 fs0 fc0 sc0 ls0 ws0">些参考文献包括了<span class="_ _0"> </span><span class="ff3">ADRC<span class="_ _1"> </span></span>控制器的理论基础<span class="ff4">、</span>算法推导以及应用案例等方面的内容<span class="ff2">,</span>能够帮助读者深</div><div class="t m0 x1 h2 y1c ff1 fs0 fc0 sc0 ls0 ws0">入理解<span class="_ _0"> </span><span class="ff3">ADRC<span class="_ _1"> </span></span>控制器的原理和实现方法<span class="ff4">。</span></div></div><div class="pi" data-data='{"ctm":[1.568627,0.000000,0.000000,1.568627,0.000000,0.000000]}'></div></div>
100+评论
captcha