ZIP基于模型预测控制(mpc)的车辆换道,车辆轨迹跟踪,换道轨迹为五次多项式,matlab与carsim联防控制 2.41MB

ugdMoXOYfe

资源文件列表:

基于模型预测控制的车辆换.zip 大约有15个文件
  1. 1.jpg 105.42KB
  2. 2.jpg 382.04KB
  3. 3.jpg 920.12KB
  4. 4.jpg 908.02KB
  5. 5.jpg 70.99KB
  6. 6.jpg 61.51KB
  7. 7.jpg 61.4KB
  8. 基于模型预测控制的车辆换道与轨迹跟踪一直是.txt 1.93KB
  9. 基于模型预测控制的车辆换道与轨迹跟踪技术分.txt 1.92KB
  10. 基于模型预测控制的车辆换道和车辆轨迹跟踪一直.txt 1.81KB
  11. 基于模型预测控制的车辆换道是一种先进的控制方法它.doc 1.71KB
  12. 基于模型预测控制的车辆换道车辆轨迹跟踪.html 5KB
  13. 基于模型预测控制的车辆换道车辆轨迹跟踪.txt 138B
  14. 基于模型预测控制的车辆换道轨迹跟踪技术分析一引.txt 2.02KB
  15. 基于模型预测控制的车辆换道轨迹跟踪技术分析一引言.txt 2.02KB

资源介绍:

基于模型预测控制(mpc)的车辆换道,车辆轨迹跟踪,换道轨迹为五次多项式,matlab与carsim联防控制
<link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/css/base.min.css" rel="stylesheet"/><link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/css/fancy.min.css" rel="stylesheet"/><link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/89761344/raw.css" rel="stylesheet"/><div id="sidebar" style="display: none"><div id="outline"></div></div><div class="pf w0 h0" data-page-no="1" id="pf1"><div class="pc pc1 w0 h0"><img alt="" class="bi x0 y0 w1 h1" src="/image.php?url=https://csdnimg.cn/release/download_crawler_static/89761344/bg1.jpg"/><div class="t m0 x1 h2 y1 ff1 fs0 fc0 sc0 ls0 ws0">基于模型预测控制<span class="ff2">(<span class="ff3">MPC</span>)</span>的车辆换道<span class="ff2">,</span>是一种先进的控制方法<span class="ff2">,</span>它通过预测车辆未来的行驶轨迹<span class="ff2">,</span></div><div class="t m0 x1 h2 y2 ff1 fs0 fc0 sc0 ls0 ws0">以及对当前环境的感知<span class="ff2">,</span>实现车辆的安全<span class="ff4">、</span>稳定地换道行驶<span class="ff4">。</span>本文将以<span class="_ _0"> </span><span class="ff3">MPC<span class="_ _1"> </span></span>算法为核心<span class="ff2">,</span>结合五次多</div><div class="t m0 x1 h2 y3 ff1 fs0 fc0 sc0 ls0 ws0">项式生成换道轨迹<span class="ff2">,</span>并介绍与<span class="_ _0"> </span><span class="ff3">Matlab<span class="_ _1"> </span></span>与<span class="_ _0"> </span><span class="ff3">Carsim<span class="_ _1"> </span></span>的联合仿真实现<span class="ff4">。</span></div><div class="t m0 x1 h2 y4 ff1 fs0 fc0 sc0 ls0 ws0">在车辆的自动驾驶技术中<span class="ff2">,</span>换道行为是一项关键的功能之一<span class="ff4">。</span>对于自动驾驶车辆而言<span class="ff2">,</span>能够准确地进</div><div class="t m0 x1 h2 y5 ff1 fs0 fc0 sc0 ls0 ws0">行换道行驶是确保道路交通安全的重要任务<span class="ff4">。</span>而<span class="_ _0"> </span><span class="ff3">MPC<span class="_ _1"> </span></span>作为一种先进的控制方法<span class="ff2">,</span>已经被广泛应用于车</div><div class="t m0 x1 h2 y6 ff1 fs0 fc0 sc0 ls0 ws0">辆的轨迹跟踪<span class="ff4">、</span>转向控制等方面<span class="ff4">。</span></div><div class="t m0 x1 h2 y7 ff3 fs0 fc0 sc0 ls0 ws0">MPC<span class="_ _1"> </span><span class="ff1">算法的核心思想是通过对车辆和环境的建模<span class="ff2">,</span>根据预测的车辆轨迹来生成最优控制策略<span class="ff4">。</span>在车辆</span></div><div class="t m0 x1 h2 y8 ff1 fs0 fc0 sc0 ls0 ws0">换道中<span class="ff2">,<span class="ff3">MPC<span class="_ _1"> </span></span></span>算法可以通过对车辆的动力学模型进行数学建模<span class="ff2">,</span>并根据当前车辆状态和环境感知信息</div><div class="t m0 x1 h2 y9 ff2 fs0 fc0 sc0 ls0 ws0">,<span class="ff1">预测车辆未来的行驶轨迹<span class="ff4">。</span>通过优化控制策略</span>,<span class="ff1">使车辆能够按照预定的换道轨迹安全<span class="ff4">、</span>稳定地进行</span></div><div class="t m0 x1 h2 ya ff1 fs0 fc0 sc0 ls0 ws0">换道行驶<span class="ff4">。</span></div><div class="t m0 x1 h2 yb ff1 fs0 fc0 sc0 ls0 ws0">为了生成符合要求的换道轨迹<span class="ff2">,</span>本文采用了五次多项式来描述车辆换道的路径<span class="ff4">。</span>五次多项式具有较高</div><div class="t m0 x1 h2 yc ff1 fs0 fc0 sc0 ls0 ws0">的灵活性和逼近能力<span class="ff2">,</span>能够精确地描述车辆的换道轨迹<span class="ff4">。</span>通过合理选择换道轨迹的起始点<span class="ff4">、</span>朝向角以</div><div class="t m0 x1 h2 yd ff1 fs0 fc0 sc0 ls0 ws0">及路径曲率等参数<span class="ff2">,</span>可以生成符合实际道路情况的换道路径<span class="ff4">。</span></div><div class="t m0 x1 h2 ye ff1 fs0 fc0 sc0 ls0 ws0">为了验证基于<span class="_ _0"> </span><span class="ff3">MPC<span class="_ _1"> </span></span>算法的换道控制策略的性能<span class="ff2">,</span>本文采用了<span class="_ _0"> </span><span class="ff3">Matlab<span class="_ _1"> </span></span>与<span class="_ _0"> </span><span class="ff3">Carsim<span class="_ _1"> </span></span>的联合仿真实现<span class="ff4">。</span></div><div class="t m0 x1 h2 yf ff3 fs0 fc0 sc0 ls0 ws0">Matlab<span class="_ _1"> </span><span class="ff1">作为一种强大的数学建模与仿真工具<span class="ff2">,</span>可以方便地对<span class="_ _0"> </span></span>MPC<span class="_ _1"> </span><span class="ff1">算法进行实现和验证<span class="ff4">。</span>而<span class="_ _0"> </span></span>Carsim</div><div class="t m0 x1 h2 y10 ff1 fs0 fc0 sc0 ls0 ws0">则提供了真实车辆动力学模型的仿真环境<span class="ff2">,</span>可以对车辆的换道行为进行真实场景的模拟<span class="ff4">。</span></div><div class="t m0 x1 h2 y11 ff1 fs0 fc0 sc0 ls0 ws0">通过<span class="_ _0"> </span><span class="ff3">Matlab<span class="_ _1"> </span></span>与<span class="_ _0"> </span><span class="ff3">Carsim<span class="_ _1"> </span></span>的联合仿真<span class="ff2">,</span>我们可以有效地评估<span class="_ _0"> </span><span class="ff3">MPC<span class="_ _1"> </span></span>算法在车辆换道控制中的性能<span class="ff4">。</span>通</div><div class="t m0 x1 h2 y12 ff1 fs0 fc0 sc0 ls0 ws0">过对不同换道场景下的仿真实验<span class="ff2">,</span>可以验证<span class="_ _0"> </span><span class="ff3">MPC<span class="_ _1"> </span></span>算法的鲁棒性和控制效果<span class="ff4">。</span>同时<span class="ff2">,</span>由于<span class="_ _0"> </span><span class="ff3">MPC<span class="_ _1"> </span></span>算法的</div><div class="t m0 x1 h2 y13 ff1 fs0 fc0 sc0 ls0 ws0">灵活性<span class="ff2">,</span>可以通过调整控制参数来适应不同的换道需求<span class="ff2">,</span>实现个性化的换道行驶<span class="ff4">。</span></div><div class="t m0 x1 h2 y14 ff1 fs0 fc0 sc0 ls0 ws0">综上所述<span class="ff2">,</span>基于模型预测控制的车辆换道是一种先进的控制方法<span class="ff2">,</span>可以实现车辆的安全<span class="ff4">、</span>稳定地换道</div><div class="t m0 x1 h2 y15 ff1 fs0 fc0 sc0 ls0 ws0">行驶<span class="ff4">。</span>通过采用五次多项式来描述换道轨迹<span class="ff2">,</span>并结合<span class="_ _0"> </span><span class="ff3">Matlab<span class="_ _1"> </span></span>与<span class="_ _0"> </span><span class="ff3">Carsim<span class="_ _1"> </span></span>的联合仿真实现<span class="ff2">,</span>可以有效</div><div class="t m0 x1 h2 y16 ff1 fs0 fc0 sc0 ls0 ws0">地验证<span class="_ _0"> </span><span class="ff3">MPC<span class="_ _1"> </span></span>算法的性能<span class="ff4">。</span>未来<span class="ff2">,</span>随着自动驾驶技术的不断发展<span class="ff2">,</span>基于<span class="_ _0"> </span><span class="ff3">MPC<span class="_ _1"> </span></span>的车辆换道控制将发挥越</div><div class="t m0 x1 h2 y17 ff1 fs0 fc0 sc0 ls0 ws0">来越重要的作用<span class="ff2">,</span>为道路交通安全和出行效率提供强有力的支持<span class="ff4">。</span></div></div><div class="pi" data-data='{"ctm":[1.568627,0.000000,0.000000,1.568627,0.000000,0.000000]}'></div></div>
100+评论
captcha
    类型标题大小时间
    ZIP使用Carsim和Simulink联合进行仿真,通过滑模观测器(SMO)估计轮胎的纵向力和侧向力 该方法在双移线工况下测试,模型740.15KB7月前
    ZIP在matlab中用蒙特卡洛算法对电动汽车充电负荷进行模拟,可自己修改电动汽车数量,lunwen复现 参考lunwen:基于V2240.84KB7月前
    ZIP固高GTS运动控制卡,C#语言三轴点胶机样本程序源代码,使用 的是固高GTS-800 8轴运动控制卡 资料齐全,3轴点胶机样本503KB7月前
    ZIPdocx工具DocX工具包是LabVIEW的一款附加软件 该附加软件提供了一个LabVIEW API,可用于创建Micro55.92KB7月前
    ZIP基于卷积-长短期记忆网络加注意力机制(CNN-LSTM-Attention)的时间序列预测程序,预测精度很高 可用于做风电功率293.77KB7月前
    ZIP马尔科夫区制转移向量自回归模型,MSVAR模型,MS-VAR模型的GiveWin软件安装和操作过程+MS-VAR各种图形制作(区576.22KB7月前
    ZIPC#源码 上位机 SECS协议,里面包含各种进制转换,用于半导体行业,程序全源码998.75KB7月前
    ZIP07.厕所少年1(不良少年).zip77.82MB7月前