星融合的路径规划.zip
大小:174.21KB
价格:24积分
下载量:0
评分:
5.0
上传者:FHsnrLqEE
更新日期:2025-09-22

A星融合DWA的路径规划算法,可实现静态避障碍及动态避障,代码注释详细,matlab源码

资源文件列表(大概)

文件名
大小
1.jpg
81.33KB
2.jpg
85.68KB
3.jpg
85.83KB
星融合的路径规划算法可实现静态避障.html
4.4KB
星融合的路径规划算法可实现静态避障碍及动.txt
123B
星融合的路径规划算法技术分析文.txt
2KB
星融合的路径规划算法技术分析文章一.txt
1.83KB
标题基于融合的路径规划算法静态避.doc
2.08KB
标题星融合的路径规划算法在静态与.txt
2.77KB
标题星融合的路径规划算法在静态避障和动态避障.txt
2.28KB

资源内容介绍

A星融合DWA的路径规划算法,可实现静态避障碍及动态避障,代码注释详细,matlab源码
<link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/css/base.min.css" rel="stylesheet"/><link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/css/fancy.min.css" rel="stylesheet"/><link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/89760622/raw.css" rel="stylesheet"/><div id="sidebar" style="display: none"><div id="outline"></div></div><div class="pf w0 h0" data-page-no="1" id="pf1"><div class="pc pc1 w0 h0"><img alt="" class="bi x0 y0 w1 h1" src="/image.php?url=https://csdnimg.cn/release/download_crawler_static/89760622/bg1.jpg"/><div class="t m0 x1 h2 y1 ff1 fs0 fc0 sc0 ls0 ws0">标题<span class="ff2">:</span>基于<span class="_ _0"> </span><span class="ff3">A*</span>融合<span class="_ _0"> </span><span class="ff3">DWA<span class="_ _1"> </span></span>的路径规划算法<span class="ff2">:</span>静态避障碍与动态避障</div><div class="t m0 x1 h2 y2 ff1 fs0 fc0 sc0 ls0 ws0">摘要<span class="ff2">:</span>路径规划算法在无人驾驶<span class="ff4">、</span>机器人导航等领域发挥着重要作用<span class="ff4">。</span>本文基于<span class="_ _0"> </span><span class="ff3">A*</span>算法融合<span class="_ _0"> </span><span class="ff3">DWA<span class="_ _1"> </span></span>算</div><div class="t m0 x1 h2 y3 ff1 fs0 fc0 sc0 ls0 ws0">法<span class="ff2">,</span>提出了一种能够实现静态避障碍与动态避障的路径规划算法<span class="ff4">。</span>通过详细的代码注释和提供的</div><div class="t m0 x1 h2 y4 ff3 fs0 fc0 sc0 ls0 ws0">matlab<span class="_ _1"> </span><span class="ff1">源码<span class="ff2">,</span>展示了算法的具体实现过程<span class="ff4">。</span></span></div><div class="t m0 x1 h2 y5 ff3 fs0 fc0 sc0 ls0 ws0">1.<span class="_ _2"> </span><span class="ff1">引言</span></div><div class="t m0 x2 h2 y6 ff1 fs0 fc0 sc0 ls0 ws0">随着人工智能技术的不断发展<span class="ff2">,</span>路径规划在无人驾驶<span class="ff4">、</span>机器人导航等领域越发重要<span class="ff4">。</span>传统的路径</div><div class="t m0 x1 h2 y7 ff1 fs0 fc0 sc0 ls0 ws0">规划算法往往只能考虑静态避障碍物<span class="ff2">,</span>无法适应动态环境的变化<span class="ff4">。</span>本文旨在提出一种综合考虑静态与</div><div class="t m0 x1 h2 y8 ff1 fs0 fc0 sc0 ls0 ws0">动态避障的路径规划算法<span class="ff2">,</span>以解决实际场景中的路径规划问题<span class="ff4">。</span></div><div class="t m0 x1 h2 y9 ff3 fs0 fc0 sc0 ls0 ws0">2.<span class="_ _2"> </span>A*<span class="ff1">算法</span></div><div class="t m0 x2 h2 ya ff3 fs0 fc0 sc0 ls0 ws0">A*<span class="ff1">算法是一种基于启发式搜索的路径规划算法<span class="ff2">,</span>通过估计到目标点的代价函数来选择最佳路径<span class="ff4">。</span></span></div><div class="t m0 x1 h2 yb ff1 fs0 fc0 sc0 ls0 ws0">在本文中<span class="ff2">,</span>我们采用<span class="_ _0"> </span><span class="ff3">A*</span>算法作为基础<span class="ff2">,</span>并对其进行了一定的改进<span class="ff2">,</span>使其能够适应动态环境的变化<span class="ff4">。</span></div><div class="t m0 x1 h2 yc ff3 fs0 fc0 sc0 ls0 ws0">3.<span class="_ _2"> </span>DWA<span class="_ _1"> </span><span class="ff1">算法</span></div><div class="t m0 x2 h2 yd ff3 fs0 fc0 sc0 ls0 ws0">DWA<span class="ff2">(</span>Dynamic Window Approach<span class="ff2">)<span class="ff1">算法是一种基于动态窗口的路径规划算法</span>,<span class="ff1">能够根据当前</span></span></div><div class="t m0 x1 h2 ye ff1 fs0 fc0 sc0 ls0 ws0">机器人状态和环境信息动态调整速度和角速度以实现避障<span class="ff4">。</span>我们将<span class="_ _0"> </span><span class="ff3">DWA<span class="_ _1"> </span></span>算法与<span class="_ _0"> </span><span class="ff3">A*</span>算法融合<span class="ff2">,</span>以达到</div><div class="t m0 x1 h2 yf ff1 fs0 fc0 sc0 ls0 ws0">综合考虑静态与动态避障的目的<span class="ff4">。</span></div><div class="t m0 x1 h2 y10 ff3 fs0 fc0 sc0 ls0 ws0">4.<span class="_ _2"> </span><span class="ff1">路径规划算法设计与实现</span></div><div class="t m0 x2 h2 y11 ff3 fs0 fc0 sc0 ls0 ws0">4.1.<span class="_"> </span><span class="ff1">静态避障碍</span></div><div class="t m0 x3 h2 y12 ff1 fs0 fc0 sc0 ls0 ws0">静态避障碍是指在规划过程中<span class="ff2">,</span>遇到不会移动的障碍物<span class="ff4">。</span>我们通过<span class="_ _0"> </span><span class="ff3">A*</span>算法来进行静态避障</div><div class="t m0 x1 h2 y13 ff1 fs0 fc0 sc0 ls0 ws0">碍的路径规划<span class="ff2">,</span>具体实现过程在提供的<span class="_ _0"> </span><span class="ff3">matlab<span class="_ _1"> </span></span>源码中展示<span class="ff4">。</span></div><div class="t m0 x2 h2 y14 ff3 fs0 fc0 sc0 ls0 ws0">4.2.<span class="_"> </span><span class="ff1">动态避障碍</span></div><div class="t m0 x3 h2 y15 ff1 fs0 fc0 sc0 ls0 ws0">动态避障碍是指在规划过程中<span class="ff2">,</span>遇到会移动的障碍物<span class="ff4">。</span>我们通过融合<span class="_ _0"> </span><span class="ff3">DWA<span class="_ _1"> </span></span>算法<span class="ff2">,</span>实现了对动</div><div class="t m0 x1 h2 y16 ff1 fs0 fc0 sc0 ls0 ws0">态避障碍的路径规划<span class="ff4">。</span>具体实现过程包括对动态障碍物的检测与预测<span class="ff2">,</span>并结合<span class="_ _0"> </span><span class="ff3">DWA<span class="_ _1"> </span></span>算法进行速度和角</div><div class="t m0 x1 h2 y17 ff1 fs0 fc0 sc0 ls0 ws0">速度调整<span class="ff4">。</span></div><div class="t m0 x2 h2 y18 ff3 fs0 fc0 sc0 ls0 ws0">4.3.<span class="_"> </span><span class="ff1">路径规划效果评估</span></div><div class="t m0 x3 h2 y19 ff1 fs0 fc0 sc0 ls0 ws0">我们在不同场景下进行了路径规划的实验<span class="ff2">,</span>并对结果进行了评估<span class="ff4">。</span>实验结果表明<span class="ff2">,</span>基于<span class="_ _0"> </span><span class="ff3">A*</span></div><div class="t m0 x1 h2 y1a ff1 fs0 fc0 sc0 ls0 ws0">融合<span class="_ _0"> </span><span class="ff3">DWA<span class="_ _1"> </span></span>的路径规划算法能够有效地规避静态和动态障碍物<span class="ff2">,</span>实现了精确的路径规划<span class="ff4">。</span></div><div class="t m0 x1 h2 y1b ff3 fs0 fc0 sc0 ls0 ws0">5.<span class="_ _2"> </span><span class="ff1">结论</span></div><div class="t m0 x2 h2 y1c ff1 fs0 fc0 sc0 ls0 ws0">本文基于<span class="_ _0"> </span><span class="ff3">A*</span>算法融合<span class="_ _0"> </span><span class="ff3">DWA<span class="_ _1"> </span></span>算法<span class="ff2">,</span>提出了一种综合考虑静态与动态避障的路径规划算法<span class="ff4">。</span>通过实</div><div class="t m0 x1 h2 y1d ff1 fs0 fc0 sc0 ls0 ws0">验验证<span class="ff2">,</span>该算法能够高效地规避静态和动态障碍物<span class="ff2">,</span>提供精确的路径规划结果<span class="ff4">。</span>未来<span class="ff2">,</span>我们将进一步</div><div class="t m0 x1 h2 y1e ff1 fs0 fc0 sc0 ls0 ws0">优化算法<span class="ff2">,</span>实现更加智能化的路径规划<span class="ff4">。</span></div></div><div class="pi" data-data='{"ctm":[1.568627,0.000000,0.000000,1.568627,0.000000,0.000000]}'></div></div>

用户评论 (0)

发表评论

captcha

相关资源

永磁同步电机神经网络自抗扰控制,附带编程涉及到的公式文档,方便理解,模型顺利运行,效果好,位置电流双闭环采用二阶自抗扰控制,永磁

永磁同步电机神经网络自抗扰控制,附带编程涉及到的公式文档,方便理解,模型顺利运行,效果好,位置电流双闭环采用二阶自抗扰控制,永磁同步电机三闭环控制,神经网络控制,自抗扰中状态扩张观测器与神经网络结合,在线自整定自抗扰中参数,(依据rbf神经网络pid控制还写)输入信号为方波信号,可以切换。均可运行,图8中可以看到参数自动整定得效果 有搭建模型的公式文档,有参考的lunwen,约20篇,可以把控制器拿下来放在你的被控对象上,微调几个参数,效果很好

195.31KB36积分

matlab:双或三方演化博弈,lotka-Volterra 1.双方演化博弈:代分析稳定点分析,代绘制相位图,matlab仿真

matlab:双或三方演化博弈,lotka-Volterra 1.双方演化博弈:代分析稳定点分析,代绘制相位图,matlab仿真图代码2.三方演化博弈:代分析稳定点分析,代绘制相位图,matlab仿真图代码3.lotka-Volterra模型

864.67KB49积分

omron欧姆龙NJ NX程序全自动锂电池二封机,主站NJ501-1400+威纶通触摸屏 整机采用EtherCAT总线网络节

omron欧姆龙NJ NX程序全自动锂电池二封机,主站NJ501-1400+威纶通触摸屏。整机采用EtherCAT总线网络节点控制,松下A6总线控制。轴控制全部封装成功能块,可按照使用选择对应的功能,JOG功能,相对定位,绝对定位。扫码通信功能块。E5CC温控器SP,SV,AT等读写温度控制,松下真空表真空压力模拟量控制,基恩士测厚元件应用涵盖人机配方一键换型功能,故障记录功能,产量统计及OEE功能,基恩士电池二维条码读取功能,AND电子称数据读写控制, 全st梯形图编写,注释齐全。

5.67MB39积分

STM32+AD7124+热电偶方案+Pt100冷端补偿解析工程源码,源码包含Pt100、NTC热敏、热电偶处理驱动源码,支持

STM32+AD7124+热电偶方案+Pt100冷端补偿解析工程源码,源码包含Pt100、NTC热敏、热电偶处理驱动源码,支持热电偶类型T、J、E、N、K、B、如果用于别的R、S 8种类型,并有Pt100测温方案 原理图,含三线制 ,四线制三线制双恒流源比例法,消除导线电阻误差

2.76MB32积分