基于改进粒子群算法.zip
大小:681.77KB
价格:10积分
下载量:0
评分:
5.0
上传者:zQteSPzoCE
更新日期:2024-09-16

《基于改进粒子群算法的混合储能系统容量优化》完全复现matlab 以全生命周期费用最低为目标函数,负荷缺电率作为风光互补发电

资源文件列表(大概)

文件名
大小
1.jpg
341.21KB
2.jpg
240.71KB
3.jpg
99.99KB
4.jpg
53.85KB
基于改进粒子群算法的混合储能系统.txt
2.56KB
基于改进粒子群算法的混合储能系统容量优.txt
2.99KB
基于改进粒子群算法的混合储能系统容量优化分.txt
2.87KB
基于改进粒子群算法的混合储能系统容量优化分析.txt
2.41KB
基于改进粒子群算法的混合储能系统容量优化在信息技.txt
2.42KB
基于改进粒子群算法的混合储能系统容量优化完.txt
440B
基于改进粒子群算法的混合储能系统容量优化完全.doc
1.92KB
基于改进粒子群算法的混合储能系统容量优化完全复现.html
5.49KB

资源内容介绍

《基于改进粒子群算法的混合储能系统容量优化》完全复现matlab。以全生命周期费用最低为目标函数,负荷缺电率作为风光互补发电系统的运行指标,得到蓄电池储能和超级电容个数,缺电率和系统最小费用。粒子群算法:权重改进、对称加速因子、不对称加速因子三种情况的优化结果和迭代曲线。另包含2020年最新提出的阿基米德优化算法AOA和麻雀搜索算法SSA对该lunwen的实现。(该算法收敛速度快,不存在pso的早熟收敛)
<link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/css/base.min.css" rel="stylesheet"/><link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/css/fancy.min.css" rel="stylesheet"/><link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/89760554/raw.css" rel="stylesheet"/><div id="sidebar" style="display: none"><div id="outline"></div></div><div class="pf w0 h0" data-page-no="1" id="pf1"><div class="pc pc1 w0 h0"><img alt="" class="bi x0 y0 w1 h1" src="/image.php?url=https://csdnimg.cn/release/download_crawler_static/89760554/bg1.jpg"/><div class="t m0 x1 h2 y1 ff1 fs0 fc0 sc0 ls0 ws0">《<span class="ff2">基于改进粒子群算法的混合储能系统容量优化</span>》<span class="ff2">完全复现</span></div><div class="t m0 x1 h2 y2 ff2 fs0 fc0 sc0 ls0 ws0">摘要<span class="ff3">:</span></div><div class="t m0 x1 h2 y3 ff2 fs0 fc0 sc0 ls0 ws0">混合储能系统在风光互补发电领域具有广泛应用前景<span class="ff1">。</span>本文以全生命周期费用最低为目标函数<span class="ff3">,</span>以负</div><div class="t m0 x1 h2 y4 ff2 fs0 fc0 sc0 ls0 ws0">荷缺电率作为风光互补发电系统的运行指标<span class="ff3">,</span>通过改进粒子群算法<span class="ff3">,</span>得到了蓄电池储能和超级电容的</div><div class="t m0 x1 h2 y5 ff2 fs0 fc0 sc0 ls0 ws0">最佳容量配置方案<span class="ff3">,</span>以及系统的最小费用和缺电率<span class="ff1">。</span>同时<span class="ff3">,</span>还引入了阿基米德优化算法和麻雀搜索算</div><div class="t m0 x1 h2 y6 ff2 fs0 fc0 sc0 ls0 ws0">法<span class="ff3">,</span>对比分析了它们与粒子群算法的优化结果和收敛速度<span class="ff1">。</span></div><div class="t m0 x1 h2 y7 ff4 fs0 fc0 sc0 ls0 ws0">1.<span class="_ _0"> </span><span class="ff2">引言</span></div><div class="t m0 x1 h2 y8 ff2 fs0 fc0 sc0 ls0 ws0">混合储能系统是一种将多种储能设备结合起来的系统<span class="ff3">,</span>能够提供持续稳定的电力供应<span class="ff1">。</span>在风光互补发</div><div class="t m0 x1 h2 y9 ff2 fs0 fc0 sc0 ls0 ws0">电系统中<span class="ff3">,</span>混合储能系统的容量优化是一个重要的问题<span class="ff1">。</span>本文主要研究了基于改进粒子群算法的混合</div><div class="t m0 x1 h2 ya ff2 fs0 fc0 sc0 ls0 ws0">储能系统容量优化<span class="ff3">,</span>并且引入了阿基米德优化算法和麻雀搜索算法进行对比分析<span class="ff1">。</span></div><div class="t m0 x1 h2 yb ff4 fs0 fc0 sc0 ls0 ws0">2.<span class="_ _0"> </span><span class="ff2">研究方法</span></div><div class="t m0 x1 h2 yc ff4 fs0 fc0 sc0 ls0 ws0">2.1.<span class="_"> </span><span class="ff2">目标函数和运行指标</span></div><div class="t m0 x1 h2 yd ff2 fs0 fc0 sc0 ls0 ws0">本文以全生命周期费用最低为目标函数<span class="ff3">,</span>并以负荷缺电率作为风光互补发电系统的运行指标<span class="ff1">。</span>通过优</div><div class="t m0 x1 h2 ye ff2 fs0 fc0 sc0 ls0 ws0">化控制策略和容量配置<span class="ff3">,</span>既可以降低系统的运营成本<span class="ff3">,</span>又可以提高系统的可靠性<span class="ff1">。</span></div><div class="t m0 x1 h2 yf ff4 fs0 fc0 sc0 ls0 ws0">2.2.<span class="_"> </span><span class="ff2">改进粒子群算法</span></div><div class="t m0 x1 h2 y10 ff2 fs0 fc0 sc0 ls0 ws0">在粒子群算法的基础上<span class="ff3">,</span>本文提出了三种改进方法<span class="ff3">:</span>权重改进<span class="ff1">、</span>对称加速因子和不对称加速因子<span class="ff1">。</span>通</div><div class="t m0 x1 h2 y11 ff2 fs0 fc0 sc0 ls0 ws0">过调整粒子的速度和位置<span class="ff3">,</span>改进粒子群算法能够更快地找到最优解<span class="ff3">,</span>并且避免了早熟收敛的问题<span class="ff1">。</span></div><div class="t m0 x1 h2 y12 ff4 fs0 fc0 sc0 ls0 ws0">2.3.<span class="_"> </span><span class="ff2">阿基米德优化算法和麻雀搜索算法</span></div><div class="t m0 x1 h2 y13 ff2 fs0 fc0 sc0 ls0 ws0">为了进一步提高混合储能系统的优化效果<span class="ff3">,</span>本文引入了阿基米德优化算法<span class="ff3">(<span class="ff4">AOA</span>)</span>和麻雀搜索算法<span class="ff3">(</span></div><div class="t m0 x1 h2 y14 ff4 fs0 fc0 sc0 ls0 ws0">SSA<span class="ff3">)<span class="ff1">。</span></span>AOA<span class="_ _1"> </span><span class="ff2">是一种基于阿基米德螺线的优化算法<span class="ff3">,</span>能够在寻找全局最优解时具有较快的收敛速度<span class="ff1">。</span></span></div><div class="t m0 x1 h2 y15 ff4 fs0 fc0 sc0 ls0 ws0">SSA<span class="_ _1"> </span><span class="ff2">是一种模拟麻雀搜索行为的优化算法<span class="ff3">,</span>能够有效地避免陷入局部最优解<span class="ff1">。</span></span></div><div class="t m0 x1 h2 y16 ff4 fs0 fc0 sc0 ls0 ws0">3.<span class="_ _0"> </span><span class="ff2">实验结果与分析</span></div><div class="t m0 x1 h2 y17 ff2 fs0 fc0 sc0 ls0 ws0">本文在<span class="_ _2"> </span><span class="ff4">matlab<span class="_ _1"> </span></span>环境中进行了实验<span class="ff3">,</span>并对改进粒子群算法<span class="ff1">、<span class="ff4">AOA<span class="_ _1"> </span></span></span>和<span class="_ _2"> </span><span class="ff4">SSA<span class="_ _1"> </span></span>进行了完全的复现<span class="ff1">。</span>实验结</div><div class="t m0 x1 h2 y18 ff2 fs0 fc0 sc0 ls0 ws0">果表明<span class="ff3">,</span>改进粒子群算法在容量优化方面取得了较好的效果<span class="ff3">,</span>并且收敛速度更快<span class="ff1">。<span class="ff4">AOA<span class="_ _1"> </span></span></span>和<span class="_ _2"> </span><span class="ff4">SSA<span class="_ _1"> </span></span>的应用</div><div class="t m0 x1 h2 y19 ff2 fs0 fc0 sc0 ls0 ws0">也能够有效改进系统的性能<span class="ff3">,</span>但相比之下<span class="ff3">,<span class="ff4">AOA<span class="_ _1"> </span></span></span>表现出更好的优化效果<span class="ff1">。</span></div><div class="t m0 x1 h2 y1a ff4 fs0 fc0 sc0 ls0 ws0">4.<span class="_ _0"> </span><span class="ff2">结论与展望</span></div><div class="t m0 x1 h2 y1b ff2 fs0 fc0 sc0 ls0 ws0">本文基于改进粒子群算法的混合储能系统容量优化进行了全面的研究<span class="ff1">。</span>通过实验验证<span class="ff3">,</span>改进粒子群算</div><div class="t m0 x1 h2 y1c ff2 fs0 fc0 sc0 ls0 ws0">法能够有效提高混合储能系统的性能<span class="ff3">,</span>并且在收敛速度上具有优势<span class="ff1">。</span>同时<span class="ff3">,</span>引入了<span class="_ _2"> </span><span class="ff4">AOA<span class="_ _1"> </span></span>和<span class="_ _2"> </span><span class="ff4">SSA<span class="_ _1"> </span></span>算法</div><div class="t m0 x1 h2 y1d ff3 fs0 fc0 sc0 ls0 ws0">,<span class="ff2">进一步提高了系统的优化效果<span class="ff1">。</span>未来的研究可以结合其他优化算法</span>,<span class="ff2">进一步改进混合储能系统的容</span></div><div class="t m0 x1 h2 y1e ff2 fs0 fc0 sc0 ls0 ws0">量优化问题<span class="ff1">。</span></div></div><div class="pi" data-data='{"ctm":[1.568627,0.000000,0.000000,1.568627,0.000000,0.000000]}'></div></div>

用户评论 (0)

发表评论

captcha

相关资源

灰狼优化算法GWO优化SVM支持向量机惩罚参数c和核函数参数g,有例子,易上手,简单粗暴,替换数据即可,分类问题 仅适应于wi

灰狼优化算法GWO优化SVM支持向量机惩罚参数c和核函数参数g,有例子,易上手,简单粗暴,替换数据即可,分类问题。仅适应于windows系统这段程序主要是一个使用灰狼算法优化支持向量机(SVM)参数的过程。下面我将逐步解释程序的功能、应用领域、工作内容、主要思路、解决的问题、涉及的知识点等。首先,程序开始时使用tic函数启动计时器,用于计算程序的运行时间。然后,通过close all、clear和clc函数清空环境变量,确保程序从一个干净的状态开始。接下来,程序读取两个Excel文件train.xlsx和test.xlsx,并将它们分别存储在train和test变量中。这两个文件包含了训练集和测试集的数据。其中,前n-1列是输入特征,最后一列是输出标签。然后,程序进行数据预处理。使用mapminmax函数将训练集和测试集的数据归一化到[0,1]区间。归一化后的数据存储在train_wine和test_wine变量中。接下来,程序利用灰狼算法选择最佳的SVM参数c和g。首先,定义了一些参数,如狼群数量、最大迭代次数、参数维度、参数取值上下界等。然后,初始化了Alpha

248.21KB10积分

基于MATLAB m编程的发动机最优工作曲线计算程序(OOL),在此工作曲线下,发动机燃油消耗最小 文件内含:1、发动机最优工

基于MATLAB m编程的发动机最优工作曲线计算程序(OOL),在此工作曲线下,发动机燃油消耗最小。文件内含:1、发动机最优工作曲线计算程序m文件;2、发动机万有特性数据excel文件注:附赠电机效率map绘制程序(m程序)与对应电机效率map数据(excel )

1.53MB50积分

python链表实战制作学生管理系统(附带pyqt5的界面优化)

python链表实战制作学生管理系统(附带pyqt5的界面优化)

4.21KB20积分

基于模型强化学习的离网微电网终身控制Python源代码,保证正确离网微网的终身控制问题包括两个任务,即对微网设备的状态进行估计

基于模型强化学习的离网微电网终身控制Python源代码,保证正确离网微网的终身控制问题包括两个任务,即对微网设备的状态进行估计和通过预测未来消费量和可再生产量来考虑不确定性的运行规划。有效控制的主要挑战来自于随时间发生的各种变化。提出了一个用于农村电气化离网微电网建模的开源强化框架。将孤立微电网的终身控制问题归结为马尔可夫决策过程。我们对渐进式和突然性的变化进行分类。提出了一种新的基于模型的强化学习算法,能够解决这两种类型的变化。特别地,所提出的算法在快速变化的系统动态中表现出了泛化特性、传输能力和较好的鲁棒性。将该算法与基于规则的策略和带有前瞻功能的模型预测控制器进行了比较。

33.55KB27积分