pandas121212121212122
资源内容介绍
pandas121212121212122 import pandas as pdimport jsondf = pd.read_csv('nba.csv')print(df.to_string()) #to_string() 用于返回 DataFrame 类型的数据,如果不使用该函数,则输出结果为数据的前面 5 行和末尾 5 行,中间部分以 ... 代替df = pd.read_csv('nba.csv')print(df)# 三个字段 name, site, agenme = ["Google", "Runoob", "Taobao", "Wiki"]st = ["www.google.com", "www.runoob.com", "www.taobao.com", "www.wikipedia.org"]ag = [90, 40, 80, 98]# 字典dict = {'name': nme, 'site': st, 'age': ag}df = pd.DataFrame(dict)# 保存 dataframedf.to_csv('site.csv')df = pd.read_csv('nba.csv')print(df.head()) # head( n ) 方法用于读取前面的 n 行,如果不填参数 n ,默认返回 5 行df = pd.read_csv('nba.csv')print(df.head(10))df = pd.read_csv('nba.csv')print(df.tail()) # # head( n ) 方法用于读取后面的 n 行,如果不填参数 n ,默认返回 5 行df = pd.read_csv('nba.csv')print(df.tail(10))df = pd.read_csv('nba.csv')print(df.info())df = pd.read_csv('property-data.csv')print (df['NUM_BEDROOMS'])print (df['NUM_BEDROOMS'].isnull()) # 默认Pandas把 n/a;NA;NaN 当做空数据missing_values = ["n/a", "na", "--"]df = pd.read_csv('property-data.csv', na_values = missing_values) # 将列表 missing_values 中定义的字符串("n/a", "na", "--")在读取 CSV 文件时识别为缺失值(NaN)print (df['NUM_BEDROOMS'])print (df['NUM_BEDROOMS'].isnull())# DataFrame.dropna(axis=0, how='any', thresh=None, subset=None, inplace=False)# axis:默认为 0,表示逢空值剔除整行,如果设置参数 axis=1 表示逢空值去掉整列。# how:默认为 'any' 如果一行(或一列)里任何一个数据有出现 NA 就去掉整行,如果设置 how='all' 一行(或列)都是 NA 才去掉这整行。# thresh:设置需要多少非空值的数据才可以保留下来的。# subset:设置想要检查的列。如果是多个列,可以使用列名的 list 作为参数。# inplace:如果设置 True,将计算得到的值直接覆盖之前的值并返回 None,修改的是源数据df = pd.read_csv('property-data.csv')new_df = df.dropna()print(new_df.to_string())df = pd.read_csv('property-data.csv')df.dropna(inplace = True) # 修改源数据 DataFrameprint(df.to_string())df = pd.read_csv('property-data.csv')df.fillna(12345, inplace = True) # 使用 12345 替换空字段print(df.to_string())df = pd.read_csv('property-data.csv')df.dropna(subset=['ST_NUM'], inplace = True)print(df.to_string())df = pd.read_csv('property-data.csv')df['PID'].fillna(12345, inplace = True)print(df.to_string())# Pandas使用 mean()、median() 和 mode() 方法计算列的均值(所有值加起来的平均值)、中位数值(排序后排在中间的数)和众数(出现频率最高的数)df = pd.read_csv('property-data.csv')x = df["ST_NUM"].mean()df["ST_NUM"].fillna(x, inplace = True)print(df.to_string())df = pd.read_csv('property-data.csv')x = df["ST_NUM"].median()df["ST_NUM"].fillna(x, inplace = True)print(df.to_string())df = pd.read_csv('property-data.csv')x = df["ST_NUM"].mode()df["ST_NUM"].fillna(x, inplace = True)print(df.to_string())# 第三个日期格式错误data = { "Date": ['2020/12/01', '2020/12/02' , '20201226'], "duration": [50, 40, 45]}df = pd.DataFrame(data, index = ["day1", "day2", "day3"])df['Date'] = pd.to_datetime(df['Date'], format='mixed')print(df.to_string())person = { "name": ['Google', 'Runoob' , 'Taobao'], "age": [50, 40, 12345] # 12345 年龄数据是错误的}df = pd.DataFrame(person)df.loc[2, 'age'] = 30 # 修改数据print(df.to_string())person = { "name": ['Google', 'Runoob' , 'Taobao'], "age": [50, 200, 12345]}df = pd.DataFrame(person)for x in df.index: if df.loc[x, "age"] > 120: df.loc[x, "age"] = 120print(df.to_string())person = { "name": ['Google', 'Runoob' , 'Taobao'], "age": [50, 40, 12345] # 12345 年龄数据是错误的}df = pd.DataFrame(person)for x in df.index: if df.loc[x, "age"] > 120: df.drop(x, inplace = True)person = { "name": ['Google', 'Runoob', 'Runoob', 'Taobao'], "age": [50, 40, 40, 23]}df = pd.DataFrame(person)print(df.duplicated())persons = { "name": ['Google', 'Runoob', 'Runoob', 'Taobao'], "age": [50, 40, 40, 23]}df = pd.DataFrame(persons)df.drop_duplicates(inplace = True)print(df)