此模型为模型亮点为基于神经网络的控制器.zip
大小:69.87KB
价格:10积分
下载量:0
评分:
5.0
上传者:PmeaVQBDhA
更新日期:2025-09-22

此模型为simulink模型,亮点为基于RBF神经网络的PID控制器用于控制PMSM的转速环 神经网络部分为用matlab编写

资源文件列表(大概)

文件名
大小
1.jpg
35.95KB
2.jpg
51.85KB
基于神经网络的控制器在模型中的应用与探讨一.txt
1.89KB
基于神经网络的控制器在模型中的应用分.txt
2.04KB
基于神经网络的控制器在模型中的应用分析一引.txt
2.05KB
本文将围绕提供的短语展开讨论重点关注模型中基.doc
1.58KB
本文将围绕着基于神经网络的控制器用于控制的转速.txt
1.75KB
此模型为模型亮点为基于神经.html
4.55KB
此模型为模型亮点为基于神经.txt
231B
随着科技的发展和应用场景的不断拓展.txt
1.37KB

资源内容介绍

此模型为simulink模型,亮点为基于RBF神经网络的PID控制器用于控制PMSM的转速环。神经网络部分为用matlab编写的s-function模块,图一为神经网络部分代码,图二为转速突变的响应曲线,效果较好。
<link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/css/base.min.css" rel="stylesheet"/><link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/css/fancy.min.css" rel="stylesheet"/><link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/89867619/raw.css" rel="stylesheet"/><div id="sidebar" style="display: none"><div id="outline"></div></div><div class="pf w0 h0" data-page-no="1" id="pf1"><div class="pc pc1 w0 h0"><img alt="" class="bi x0 y0 w1 h1" src="/image.php?url=https://csdnimg.cn/release/download_crawler_static/89867619/bg1.jpg"/><div class="t m0 x1 h2 y1 ff1 fs0 fc0 sc0 ls0 ws0">本文将围绕提供的短语展开讨论<span class="ff2">,</span>重点关注<span class="_ _0"> </span><span class="ff3">Simulink<span class="_ _1"> </span></span>模型中基于<span class="_ _0"> </span><span class="ff3">RBF<span class="_ _1"> </span></span>神经网络的<span class="_ _0"> </span><span class="ff3">PID<span class="_ _1"> </span></span>控制器在</div><div class="t m0 x1 h2 y2 ff3 fs0 fc0 sc0 ls0 ws0">PMSM<span class="_ _1"> </span><span class="ff1">转速环控制中的应用<span class="ff4">。</span></span></div><div class="t m0 x1 h2 y3 ff1 fs0 fc0 sc0 ls0 ws0">首先<span class="ff2">,</span>我们将简要介绍<span class="_ _0"> </span><span class="ff3">Simulink<span class="_ _1"> </span></span>模型<span class="ff2">,</span>并针对该模型中的亮点进行详细解析<span class="ff4">。<span class="ff3">Simulink<span class="_ _1"> </span></span></span>模型是一</div><div class="t m0 x1 h2 y4 ff1 fs0 fc0 sc0 ls0 ws0">种基于图形化界面的建模环境<span class="ff2">,</span>它可用于开发<span class="ff4">、</span>仿真和分析各种动态系统<span class="ff4">。</span>这种模型的优势在于能够</div><div class="t m0 x1 h2 y5 ff1 fs0 fc0 sc0 ls0 ws0">提供直观的视觉表达以及强大的仿真功能<span class="ff2">,</span>使得模型的设计与实现更加便捷高效<span class="ff4">。</span></div><div class="t m0 x1 h2 y6 ff1 fs0 fc0 sc0 ls0 ws0">在<span class="_ _0"> </span><span class="ff3">Simulink<span class="_ _1"> </span></span>模型中<span class="ff2">,</span>我们的关注点是基于<span class="_ _0"> </span><span class="ff3">RBF<span class="_ _1"> </span></span>神经网络的<span class="_ _0"> </span><span class="ff3">PID<span class="_ _1"> </span></span>控制器在<span class="_ _0"> </span><span class="ff3">PMSM<span class="_ _1"> </span></span>转速环控制中的运</div><div class="t m0 x1 h2 y7 ff1 fs0 fc0 sc0 ls0 ws0">用<span class="ff4">。<span class="ff3">PID<span class="_ _1"> </span></span></span>控制器是一种经典的反馈控制器<span class="ff2">,</span>用于调节系统的输出<span class="ff2">,</span>使其与期望的参考输入保持一致<span class="ff4">。</span></div><div class="t m0 x1 h2 y8 ff1 fs0 fc0 sc0 ls0 ws0">而基于<span class="_ _0"> </span><span class="ff3">RBF<span class="_ _1"> </span></span>神经网络的<span class="_ _0"> </span><span class="ff3">PID<span class="_ _1"> </span></span>控制器则是通过引入神经网络模块来优化<span class="_ _0"> </span><span class="ff3">PID<span class="_ _1"> </span></span>控制器的性能<span class="ff4">。</span></div><div class="t m0 x1 h2 y9 ff1 fs0 fc0 sc0 ls0 ws0">我们使用<span class="_ _0"> </span><span class="ff3">Matlab<span class="_ _1"> </span></span>编写了一个<span class="_ _0"> </span><span class="ff3">S-function<span class="_ _1"> </span></span>模块<span class="ff2">,</span>该模块实现了基于<span class="_ _0"> </span><span class="ff3">RBF<span class="_ _1"> </span></span>神经网络的<span class="_ _0"> </span><span class="ff3">PID<span class="_ _1"> </span></span>控制器<span class="ff4">。</span></div><div class="t m0 x1 h2 ya ff3 fs0 fc0 sc0 ls0 ws0">S-function<span class="_ _1"> </span><span class="ff1">模块是<span class="_ _0"> </span></span>Simulink<span class="_ _1"> </span><span class="ff1">中的一种可扩展模块<span class="ff2">,</span>它能够以<span class="_ _0"> </span></span>C/C++<span class="ff1">代码的形式嵌入到</span></div><div class="t m0 x1 h2 yb ff3 fs0 fc0 sc0 ls0 ws0">Simulink<span class="_ _1"> </span><span class="ff1">模型中<span class="ff2">,</span>以实现对模型的自定义控制逻辑<span class="ff4">。</span></span></div><div class="t m0 x1 h2 yc ff1 fs0 fc0 sc0 ls0 ws0">图一展示了我们设计的基于<span class="_ _0"> </span><span class="ff3">RBF<span class="_ _1"> </span></span>神经网络的<span class="_ _0"> </span><span class="ff3">PID<span class="_ _1"> </span></span>控制器的代码片段<span class="ff4">。</span>在这段代码中<span class="ff2">,</span>我们首先定义</div><div class="t m0 x1 h2 yd ff1 fs0 fc0 sc0 ls0 ws0">了神经网络的结构和参数<span class="ff2">,</span>然后根据输入信号和网络权重计算出控制器的输出<span class="ff4">。</span>通过神经网络的优化</div><div class="t m0 x1 h2 ye ff1 fs0 fc0 sc0 ls0 ws0">训练<span class="ff2">,<span class="ff3">PID<span class="_ _1"> </span></span></span>控制器能够更准确地调节<span class="_ _0"> </span><span class="ff3">PMSM<span class="_ _1"> </span></span>的转速<span class="ff2">,</span>从而实现更稳定的控制效果<span class="ff4">。</span></div><div class="t m0 x1 h2 yf ff1 fs0 fc0 sc0 ls0 ws0">为了验证我们设计的基于<span class="_ _0"> </span><span class="ff3">RBF<span class="_ _1"> </span></span>神经网络的<span class="_ _0"> </span><span class="ff3">PID<span class="_ _1"> </span></span>控制器的性能<span class="ff2">,</span>我们进行了转速突变的响应曲线测试</div><div class="t m0 x1 h2 y10 ff2 fs0 fc0 sc0 ls0 ws0">,<span class="ff1">测试结果如图二所示<span class="ff4">。</span>从曲线上看</span>,<span class="ff3">PID<span class="_ _1"> </span><span class="ff1">控制器能够在转速突变时迅速调整输出</span></span>,<span class="ff1">使得系统在较短</span></div><div class="t m0 x1 h2 y11 ff1 fs0 fc0 sc0 ls0 ws0">时间内恢复到期望的转速<span class="ff4">。</span>这表明基于<span class="_ _0"> </span><span class="ff3">RBF<span class="_ _1"> </span></span>神经网络的<span class="_ _0"> </span><span class="ff3">PID<span class="_ _1"> </span></span>控制器在<span class="_ _0"> </span><span class="ff3">PMSM<span class="_ _1"> </span></span>转速环控制中具有较好</div><div class="t m0 x1 h2 y12 ff1 fs0 fc0 sc0 ls0 ws0">的效果和鲁棒性<span class="ff4">。</span></div><div class="t m0 x1 h2 y13 ff1 fs0 fc0 sc0 ls0 ws0">总结而言<span class="ff2">,</span>本文基于<span class="_ _0"> </span><span class="ff3">Simulink<span class="_ _1"> </span></span>模型解析了基于<span class="_ _0"> </span><span class="ff3">RBF<span class="_ _1"> </span></span>神经网络的<span class="_ _0"> </span><span class="ff3">PID<span class="_ _1"> </span></span>控制器在<span class="_ _0"> </span><span class="ff3">PMSM<span class="_ _1"> </span></span>转速环控制中</div><div class="t m0 x1 h2 y14 ff1 fs0 fc0 sc0 ls0 ws0">的应用<span class="ff4">。</span>通过在<span class="_ _0"> </span><span class="ff3">Matlab<span class="_ _1"> </span></span>中编写<span class="_ _0"> </span><span class="ff3">S-function<span class="_ _1"> </span></span>模块<span class="ff2">,</span>我们成功实现了基于<span class="_ _0"> </span><span class="ff3">RBF<span class="_ _1"> </span></span>神经网络的<span class="_ _0"> </span><span class="ff3">PID<span class="_ _1"> </span></span>控制</div><div class="t m0 x1 h2 y15 ff1 fs0 fc0 sc0 ls0 ws0">器<span class="ff2">,</span>并通过转速突变测试验证了其性能<span class="ff4">。</span>这种控制器的应用有望为<span class="_ _0"> </span><span class="ff3">PMSM<span class="_ _1"> </span></span>转速控制提供更为精确和稳</div><div class="t m0 x1 h2 y16 ff1 fs0 fc0 sc0 ls0 ws0">定的解决方案<span class="ff4">。</span></div><div class="t m0 x1 h2 y17 ff1 fs0 fc0 sc0 ls0 ws0">如需了解更多相关内容<span class="ff2">,</span>请联系我们<span class="ff4">。</span></div></div><div class="pi" data-data='{"ctm":[1.568627,0.000000,0.000000,1.568627,0.000000,0.000000]}'></div></div>

用户评论 (0)

发表评论

captcha

相关资源

以波音747为背景,建立了飞机运动的空间六自由度仿真模型 其中包含以下部分: 1. 飞机运动的空间六自由度仿真模型; 2

以波音747为背景,建立了飞机运动的空间六自由度仿真模型。其中包含以下部分: 1. 飞机运动的空间六自由度仿真模型; 2. 自动驾驶仪仿真模型; 3.执行器仿真模型; 4.大气重力环境模型; 5.气动数据模型; 6.发动机推力模型; 另外,仿真过程中: 1.考虑了风场的影响; 2.考虑了传感器的随机噪声; 3.考虑了执行器时间延迟; 4.采用变增益控制器; 状态方程选取:速度、攻角、侧滑角、机体系三轴角速度、欧拉角、地面坐标系坐标作为状态量; 输出方程有:12个状态量;12个状态微分值;以及机体系速度、加速度、过载等。 需Matlab2007b及更高版本运行。

120.15KB38积分

基于领航者人工势场法的队形变化避障控制matlab代码仿真,路径规划,改进人工势场法,拓扑结构,集群,变队形,基于领航者与人工势

基于领航者人工势场法的队形变化避障控制matlab代码仿真,路径规划,改进人工势场法,拓扑结构,集群,变队形,基于领航者与人工势场法相结合的编队控制算法,可随意变队形 增加机器人个数。

464.32KB13积分

Matlab simulink仿真风光储直流微电网模型,完美运行,可在此基础上进行改进.风机为永磁直驱风机,光伏电池用扰动观察

Matlab simulink仿真风光储直流微电网模型,完美运行,可在此基础上进行改进.风机为永磁直驱风机,光伏电池用扰动观察法控制,混合储能用低通滤波器分频控制,低频不平衡量用蓄电池补偿,高频不平衡量用超级电容补偿,母线电压可为700V或800V。

165.4KB19积分

数电仿真文件+报告交通信号灯 十字路口 红绿红时间可随意更要求:系统工作时,东西方向绿灯亮时,南北方向红灯亮,该信号灯点亮

数电仿真文件+报告交通信号灯 十字路口 红绿红时间可随意更要求:系统工作时,东西方向绿灯亮时,南北方向红灯亮,该信号灯点亮时间为xxS,同时点亮时间进行倒计时显示;当时间减为00时,东西方向绿灯熄灭,黄灯同时点亮,并维持xxS秒,南北方向仍为红灯亮;当倒计时显示减为00时,东西方向红灯亮, 南北方向绿灯亮, 点亮时间设定为xxS; 当倒计时显示减为00时, 南北方向绿灯熄灭,黄灯同时点亮,并维持xS秒,东西方向仍为红灯亮。当倒计时显示减为00时,系统状态进入下一个周期,以后周而复始的循环。

238.54KB10积分