Matlab 基于VMD分解联合小波阈值去噪,程序包括VMD分解,小波阈值去噪,SNR评价指标,绘制不同小波函数不同分解层数SN

qYyySxEgZIP基于分解联合小波阈值去噪.zip  103.15KB

资源文件列表:

ZIP 基于分解联合小波阈值去噪.zip 大约有9个文件
  1. 1.jpg 106.93KB
  2. 中的分解联合小波阈值去噪寻找最佳小波函数与分解.txt 2.47KB
  3. 基于分解联合小波阈.txt 192B
  4. 基于分解联合小波阈值去噪程序包括分解小波阈.html 4.31KB
  5. 基于的分解联合小波阈值去噪技术研究.txt 2.05KB
  6. 基于的分解联合小波阈值去噪技术研究一引言随着信.doc 1.86KB
  7. 技术博客深度探讨基于分解与小波阈值.txt 2.12KB
  8. 无刷直流电机的仿真与双闭环控制分析一引言随.txt 2.28KB
  9. 西门子博途型速度曲线加减速与位置轨迹规划深度解析.txt 2.22KB

资源介绍:

Matlab 基于VMD分解联合小波阈值去噪,程序包括VMD分解,小波阈值去噪,SNR评价指标,绘制不同小波函数不同分解层数SNR曲线,指出最佳的小波函数,分解层数

<link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/css/base.min.css" rel="stylesheet"/><link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/css/fancy.min.css" rel="stylesheet"/><link href="/image.php?url=https://csdnimg.cn/release/download_crawler_static/89866299/raw.css" rel="stylesheet"/><div id="sidebar" style="display: none"><div id="outline"></div></div><div class="pf w0 h0" data-page-no="1" id="pf1"><div class="pc pc1 w0 h0"><img alt="" class="bi x0 y0 w1 h1" src="/image.php?url=https://csdnimg.cn/release/download_crawler_static/89866299/bg1.jpg"/><div class="t m0 x1 h2 y1 ff1 fs0 fc0 sc0 ls0 ws0">基于<span class="_ _0"> </span><span class="ff2">MATLAB<span class="_ _1"> </span></span>的<span class="_ _0"> </span><span class="ff2">VMD<span class="_ _1"> </span></span>分解联合小波阈值去噪技术研究</div><div class="t m0 x1 h2 y2 ff1 fs0 fc0 sc0 ls0 ws0">一<span class="ff3">、</span>引言</div><div class="t m0 x1 h2 y3 ff1 fs0 fc0 sc0 ls0 ws0">随着信息技术的飞速发展<span class="ff4">,</span>信号处理领域对于数据的质量和精度的要求越来越高<span class="ff3">。</span>在众多的信号处理</div><div class="t m0 x1 h2 y4 ff1 fs0 fc0 sc0 ls0 ws0">方法中<span class="ff4">,</span>去噪技术是尤为重要的一环<span class="ff3">。</span>本文重点研究基于<span class="_ _0"> </span><span class="ff2">MATLAB<span class="_ _1"> </span></span>的变模态分解<span class="ff4">(<span class="ff2">VMD</span>)</span>联合小波阈</div><div class="t m0 x1 h2 y5 ff1 fs0 fc0 sc0 ls0 ws0">值去噪技术<span class="ff4">,</span>旨在提高信号的纯净度和质量<span class="ff3">。</span></div><div class="t m0 x1 h2 y6 ff1 fs0 fc0 sc0 ls0 ws0">二<span class="ff3">、</span>变模态分解<span class="ff4">(<span class="ff2">VMD</span>)</span>概述</div><div class="t m0 x1 h2 y7 ff1 fs0 fc0 sc0 ls0 ws0">变模态分解是一种适用于多分量信号的非线性<span class="ff3">、</span>非平稳信号分析方法<span class="ff3">。</span>它可以将复杂信号自适应地分</div><div class="t m0 x1 h2 y8 ff1 fs0 fc0 sc0 ls0 ws0">解为多个固有模态函数<span class="ff4">(<span class="ff2">IMF</span>),</span>这些<span class="_ _0"> </span><span class="ff2">IMF<span class="_ _1"> </span></span>分量具有不同的中心频率和模态特性<span class="ff3">。</span>通过<span class="_ _0"> </span><span class="ff2">VMD<span class="_ _1"> </span></span>分解<span class="ff4">,</span>可</div><div class="t m0 x1 h2 y9 ff1 fs0 fc0 sc0 ls0 ws0">以有效地分离出信号中的不同成分<span class="ff4">,</span>为后续处理提供便利<span class="ff3">。</span></div><div class="t m0 x1 h2 ya ff1 fs0 fc0 sc0 ls0 ws0">三<span class="ff3">、</span>小波阈值去噪原理</div><div class="t m0 x1 h2 yb ff1 fs0 fc0 sc0 ls0 ws0">小波阈值去噪是一种常用且有效的信号去噪方法<span class="ff3">。</span>其基本思想是通过小波变换将信号分解成不同尺度</div><div class="t m0 x1 h2 yc ff1 fs0 fc0 sc0 ls0 ws0">的分量<span class="ff4">,</span>并根据各尺度分量的统计特性设定阈值<span class="ff4">,</span>将低于阈值的分量置零或进行一定程度的缩减<span class="ff4">,</span>从</div><div class="t m0 x1 h2 yd ff1 fs0 fc0 sc0 ls0 ws0">而达到去噪的目的<span class="ff3">。</span>通过选择合适的小波函数和阈值策略<span class="ff4">,</span>可以有效地去除噪声<span class="ff4">,</span>保留原始信号的重</div><div class="t m0 x1 h2 ye ff1 fs0 fc0 sc0 ls0 ws0">要特征<span class="ff3">。</span></div><div class="t m0 x1 h2 yf ff1 fs0 fc0 sc0 ls0 ws0">四<span class="ff3">、<span class="ff2">MATLAB<span class="_ _1"> </span></span></span>实现过程</div><div class="t m0 x1 h2 y10 ff1 fs0 fc0 sc0 ls0 ws0">基于<span class="_ _0"> </span><span class="ff2">MATLAB<span class="_ _1"> </span></span>平台<span class="ff4">,</span>我们实现了<span class="_ _0"> </span><span class="ff2">VMD<span class="_ _1"> </span></span>分解联合小波阈值去噪程序<span class="ff3">。</span>首先<span class="ff4">,</span>利用<span class="_ _0"> </span><span class="ff2">VMD<span class="_ _1"> </span></span>算法对信号进行</div><div class="t m0 x1 h2 y11 ff1 fs0 fc0 sc0 ls0 ws0">分解<span class="ff4">,</span>得到一系列<span class="_ _0"> </span><span class="ff2">IMF<span class="_ _1"> </span></span>分量<span class="ff3">。</span>然后<span class="ff4">,</span>针对每个<span class="_ _0"> </span><span class="ff2">IMF<span class="_ _1"> </span></span>分量进行小波阈值去噪处理<span class="ff3">。</span>在去噪过程中<span class="ff4">,</span>我</div><div class="t m0 x1 h2 y12 ff1 fs0 fc0 sc0 ls0 ws0">们采用了多种不同的小波函数<span class="ff4">,</span>并对不同的小波函数和不同分解层数进行了实验对比<span class="ff3">。</span></div><div class="t m0 x1 h2 y13 ff1 fs0 fc0 sc0 ls0 ws0">五<span class="ff3">、<span class="ff2">SNR<span class="_ _1"> </span></span></span>评价指标及实验结果分析</div><div class="t m0 x1 h2 y14 ff1 fs0 fc0 sc0 ls0 ws0">为了定量评估去噪效果<span class="ff4">,</span>我们采用了信噪比<span class="ff4">(<span class="ff2">SNR</span>)</span>作为评价指标<span class="ff3">。</span>通过绘制不同小波函数<span class="ff3">、</span>不同分</div><div class="t m0 x1 h2 y15 ff1 fs0 fc0 sc0 ls0 ws0">解层数的<span class="_ _0"> </span><span class="ff2">SNR<span class="_ _1"> </span></span>曲线<span class="ff4">,</span>我们可以直观地看出在各种情况下的去噪性能<span class="ff3">。</span>通过实验<span class="ff4">,</span>我们发现某些特定的</div><div class="t m0 x1 h2 y16 ff1 fs0 fc0 sc0 ls0 ws0">小波函数和分解层数组合能够获得较好的去噪效果<span class="ff3">。</span>通过对实验结果的深入分析<span class="ff4">,</span>我们可以指出在特</div><div class="t m0 x1 h2 y17 ff1 fs0 fc0 sc0 ls0 ws0">定情况下<span class="ff4">,</span>哪种小波函数和分解层数是最佳选择<span class="ff3">。</span></div><div class="t m0 x1 h2 y18 ff1 fs0 fc0 sc0 ls0 ws0">六<span class="ff3">、</span>结论</div><div class="t m0 x1 h2 y19 ff1 fs0 fc0 sc0 ls0 ws0">本文研究了基于<span class="_ _0"> </span><span class="ff2">MATLAB<span class="_ _1"> </span></span>的<span class="_ _0"> </span><span class="ff2">VMD<span class="_ _1"> </span></span>分解联合小波阈值去噪技术<span class="ff3">。</span>通过理论分析和实验验证<span class="ff4">,</span>我们发现在</div><div class="t m0 x1 h2 y1a ff1 fs0 fc0 sc0 ls0 ws0">合适的参数设置下<span class="ff4">,</span>该方法可以有效地去除信号中的噪声<span class="ff4">,</span>提高信号的纯净度和质量<span class="ff3">。</span>通过对比不同</div></div><div class="pi" data-data='{"ctm":[1.568627,0.000000,0.000000,1.568627,0.000000,0.000000]}'></div></div>
100+评论
captcha