yolov5.zip
大小:30.58MB
价格:43积分
下载量:0
评分:
5.0
上传者:qq_36852840
更新日期:2025-09-22

yolov5实现人群计数

资源文件列表(大概)

文件名
大小
yolov5/
-
yolov5/.dockerignore
3.61KB
yolov5/.git/
-
yolov5/.git/branches/
-
yolov5/.git/config
301B
yolov5/.git/description
73B
yolov5/.git/FETCH_HEAD
-
yolov5/.git/HEAD
23B
yolov5/.git/hooks/
-
yolov5/.git/hooks/applypatch-msg.sample
478B
yolov5/.git/hooks/commit-msg.sample
896B
yolov5/.git/hooks/fsmonitor-watchman.sample
4.55KB
yolov5/.git/hooks/post-update.sample
189B
yolov5/.git/hooks/pre-applypatch.sample
424B
yolov5/.git/hooks/pre-commit.sample
1.6KB
yolov5/.git/hooks/pre-merge-commit.sample
416B
yolov5/.git/hooks/pre-push.sample
1.34KB
yolov5/.git/hooks/pre-rebase.sample
4.78KB
yolov5/.git/hooks/pre-receive.sample
544B
yolov5/.git/hooks/prepare-commit-msg.sample
1.46KB
yolov5/.git/hooks/push-to-checkout.sample
2.72KB
yolov5/.git/hooks/update.sample
3.56KB
yolov5/.git/index
13.65KB
yolov5/.git/info/
-
yolov5/.git/info/exclude
240B
yolov5/.git/logs/
-
yolov5/.git/logs/HEAD
180B
yolov5/.git/logs/refs/
-
yolov5/.git/logs/refs/heads/
-
yolov5/.git/logs/refs/heads/master
180B
yolov5/.git/logs/refs/remotes/
-
yolov5/.git/logs/refs/remotes/origin/
-
yolov5/.git/logs/refs/remotes/origin/HEAD
180B
yolov5/.git/logs/refs/remotes/origin/master
146B
yolov5/.git/objects/
-
yolov5/.git/objects/24/
-
yolov5/.git/objects/24/ee28010fbf597ec796e6e471429cde21040f90
914B
yolov5/.git/objects/5b/
-
yolov5/.git/objects/5b/00f52a9c9b57a5c9488f364fdc722d84353712
1.02KB
yolov5/.git/objects/70/
-
yolov5/.git/objects/70/f86cf95cc04704b747a8e94941e70d5d09f954
546B
yolov5/.git/objects/71/
-
yolov5/.git/objects/71/81460581ece02ea70b2fe842d2ccf4173eb278
291B
yolov5/.git/objects/78/
-
yolov5/.git/objects/78/3d877b23a75d2d39dbd639f51a43fe12167363
133B
yolov5/.git/objects/8e/
-
yolov5/.git/objects/8e/f7f74c9d8b48e6a74c5cb4ce0a6af8a7e8b6d0
11.38KB
yolov5/.git/objects/93/
-
yolov5/.git/objects/93/33f862dd72920841e90ec0e26f9d0b18d6abfd
151B
yolov5/.git/objects/9f/
-
yolov5/.git/objects/9f/2f78e636ddbd7944da3ca6db66e8f20ea5f105
2.19KB
yolov5/.git/objects/b3/
-
yolov5/.git/objects/b3/83deb7e917fef801adcb31756a57382f8d743a
12.33KB
yolov5/.git/objects/bb/
-
yolov5/.git/objects/bb/5c1f99689e96abce764894c0182093d130fa71
12.46KB
yolov5/.git/objects/c5/
-
yolov5/.git/objects/c5/47a29a9c9c20ea82fd4a0823d741f7bf1d0fcc
22.84KB
yolov5/.git/objects/cf/
-
yolov5/.git/objects/cf/3d27b8731362f97e11741768b576845840a355
1.02KB
yolov5/.git/objects/d3/
-
yolov5/.git/objects/d3/9f824a4f2fdbede6ecb1ee4dde0345262debbf
10.65KB
yolov5/.git/objects/e2/
-
yolov5/.git/objects/e2/21fbc32a11cbb33a13b4984b1cee6a3d2be79a
150B
yolov5/.git/objects/fd/
-
yolov5/.git/objects/fd/5b7bad101f26c101b7118fc5281c087574da2b
779B
yolov5/.git/objects/info/
-
yolov5/.git/objects/pack/
-
yolov5/.git/objects/pack/pack-3362ae32d143657d388225798105f5f0a60d9ada.idx
465.97KB
yolov5/.git/objects/pack/pack-3362ae32d143657d388225798105f5f0a60d9ada.pack
15.73MB
yolov5/.git/packed-refs
1.23KB
yolov5/.git/refs/
-
yolov5/.git/refs/heads/
-
yolov5/.git/refs/heads/master
41B
yolov5/.git/refs/remotes/
-
yolov5/.git/refs/remotes/origin/
-
yolov5/.git/refs/remotes/origin/HEAD
32B
yolov5/.git/refs/remotes/origin/master
41B
yolov5/.git/refs/tags/
-
yolov5/.gitattributes
75B
yolov5/.github/
-
yolov5/.github/dependabot.yml
649B
yolov5/.github/ISSUE_TEMPLATE/
-
yolov5/.github/ISSUE_TEMPLATE/bug-report.yml
2.9KB
yolov5/.github/ISSUE_TEMPLATE/config.yml
405B
yolov5/.github/ISSUE_TEMPLATE/feature-request.yml
1.79KB
yolov5/.github/ISSUE_TEMPLATE/question.yml
1.17KB
yolov5/.github/workflows/
-
yolov5/.github/workflows/ci-testing.yml
6.8KB
yolov5/.github/workflows/cla.yml
1.57KB
yolov5/.github/workflows/codeql-analysis.yml
1.17KB
yolov5/.github/workflows/docker.yml
1.66KB
yolov5/.github/workflows/format.yml
5.34KB
yolov5/.github/workflows/links.yml
2.74KB
yolov5/.github/workflows/merge-main-into-prs.yml
3.02KB
yolov5/.github/workflows/stale.yml
2.31KB
yolov5/.gitignore
3.92KB
yolov5/benchmarks.py
13.79KB
yolov5/CITATION.cff
393B
yolov5/classify/
-
yolov5/classify/predict.py
11.81KB
yolov5/classify/train.py
16.1KB
yolov5/classify/tutorial.ipynb
93.67KB
yolov5/classify/val.py
8.01KB
yolov5/CONTRIBUTING.md
4.89KB
yolov5/data/
-
yolov5/data/Argoverse.yaml
2.66KB
yolov5/data/coco.yaml
2.43KB
yolov5/data/coco128-seg.yaml
1.85KB
yolov5/data/coco128.yaml
1.83KB
yolov5/data/GlobalWheat2020.yaml
1.84KB
yolov5/data/hyps/
-
yolov5/data/hyps/hyp.no-augmentation.yaml
1.61KB
yolov5/data/hyps/hyp.Objects365.yaml
671B
yolov5/data/hyps/hyp.scratch-high.yaml
1.61KB
yolov5/data/hyps/hyp.scratch-low.yaml
1.62KB
yolov5/data/hyps/hyp.scratch-med.yaml
1.62KB
yolov5/data/hyps/hyp.VOC.yaml
1.13KB
yolov5/data/ImageNet.yaml
18.42KB
yolov5/data/ImageNet10.yaml
929B
yolov5/data/ImageNet100.yaml
2.58KB
yolov5/data/ImageNet1000.yaml
18.42KB
yolov5/data/images/
-
yolov5/data/images/bus.jpg
476.01KB
yolov5/data/images/zidane.jpg
164.99KB
yolov5/data/Objects365.yaml
8.98KB
yolov5/data/scripts/
-
yolov5/data/scripts/download_weights.sh
641B
yolov5/data/scripts/get_coco.sh
1.53KB
yolov5/data/scripts/get_coco128.sh
619B
yolov5/data/scripts/get_imagenet.sh
1.63KB
yolov5/data/scripts/get_imagenet10.sh
734B
yolov5/data/scripts/get_imagenet100.sh
738B
yolov5/data/scripts/get_imagenet1000.sh
742B
yolov5/data/SKU-110K.yaml
2.28KB
yolov5/data/VisDrone.yaml
2.9KB
yolov5/data/VOC.yaml
3.41KB
yolov5/data/xView.yaml
5.04KB
yolov5/export.py
66.14KB
yolov5/hubconf.py
23.41KB
yolov5/LICENSE
33.71KB
yolov5/models/
-
yolov5/models/common.py
50.89KB
yolov5/models/experimental.py
5.03KB
yolov5/models/hub/
-
yolov5/models/hub/anchors.yaml
3.26KB
yolov5/models/hub/yolov3-spp.yaml
1.55KB
yolov5/models/hub/yolov3-tiny.yaml
1.22KB
yolov5/models/hub/yolov3.yaml
1.54KB
yolov5/models/hub/yolov5-bifpn.yaml
1.41KB
yolov5/models/hub/yolov5-fpn.yaml
1.2KB
yolov5/models/hub/yolov5-p2.yaml
1.66KB
yolov5/models/hub/yolov5-p34.yaml
1.21KB
yolov5/models/hub/yolov5-p6.yaml
1.71KB
yolov5/models/hub/yolov5-p7.yaml
2.09KB
yolov5/models/hub/yolov5-panet.yaml
1.39KB
yolov5/models/hub/yolov5l6.yaml
1.79KB
yolov5/models/hub/yolov5m6.yaml
1.79KB
yolov5/models/hub/yolov5n6.yaml
1.79KB
yolov5/models/hub/yolov5s-ghost.yaml
1.46KB
yolov5/models/hub/yolov5s-LeakyReLU.yaml
1.48KB
yolov5/models/hub/yolov5s-transformer.yaml
1.42KB
yolov5/models/hub/yolov5s6.yaml
1.79KB
yolov5/models/hub/yolov5x6.yaml
1.79KB
yolov5/models/segment/
-
yolov5/models/segment/yolov5l-seg.yaml
1.39KB
yolov5/models/segment/yolov5m-seg.yaml
1.4KB
yolov5/models/segment/yolov5n-seg.yaml
1.4KB
yolov5/models/segment/yolov5s-seg.yaml
1.4KB
yolov5/models/segment/yolov5x-seg.yaml
1.4KB
yolov5/models/tf.py
32.97KB
yolov5/models/yolo.py
20.54KB
yolov5/models/yolov5l.yaml
1.38KB
yolov5/models/yolov5m.yaml
1.39KB
yolov5/models/yolov5n.yaml
1.39KB
yolov5/models/yolov5s.yaml
1.39KB
yolov5/models/yolov5x.yaml
1.39KB
yolov5/models/__init__.py
-
yolov5/models/__pycache__/
-
yolov5/models/__pycache__/common.cpython-38.pyc
48.04KB
yolov5/models/__pycache__/experimental.cpython-38.pyc
5.83KB
yolov5/models/__pycache__/yolo.cpython-38.pyc
19.27KB
yolov5/models/__pycache__/__init__.cpython-38.pyc
164B
yolov5/person_count.py
23.52KB
yolov5/pyproject.toml
5.25KB
yolov5/README.md
42.15KB
yolov5/README.zh-CN.md
42.25KB
yolov5/requirements.txt
1.56KB
yolov5/runs/
-
yolov5/segment/
-
yolov5/segment/predict.py
15.91KB
yolov5/segment/train.py
34.35KB
yolov5/segment/tutorial.ipynb
40.08KB
yolov5/segment/val.py
23.8KB
yolov5/test.jpg
427.76KB
yolov5/train.py
46.03KB
yolov5/tutorial.ipynb
40.45KB
yolov5/utils/
-
yolov5/utils/activations.py
4.89KB
yolov5/utils/augmentations.py
18.51KB
yolov5/utils/autoanchor.py
7.75KB
yolov5/utils/autobatch.py
2.97KB
yolov5/utils/aws/
-
yolov5/utils/aws/mime.sh
780B
yolov5/utils/aws/resume.py
1.21KB
yolov5/utils/aws/userdata.sh
1.22KB
yolov5/utils/aws/__init__.py
-
yolov5/utils/callbacks.py
2.65KB
yolov5/utils/dataloaders.py
59.07KB
yolov5/utils/docker/
-
yolov5/utils/docker/Dockerfile
2.5KB
yolov5/utils/docker/Dockerfile-arm64
1.53KB
yolov5/utils/docker/Dockerfile-cpu
1.78KB
yolov5/utils/downloads.py
5.11KB
yolov5/utils/flask_rest_api/
-
yolov5/utils/flask_rest_api/example_request.py
365B
yolov5/utils/flask_rest_api/README.md
1.68KB
yolov5/utils/flask_rest_api/restapi.py
1.54KB
yolov5/utils/general.py
50.24KB
yolov5/utils/google_app_engine/
-
yolov5/utils/google_app_engine/additional_requirements.txt
264B
yolov5/utils/google_app_engine/app.yaml
219B
yolov5/utils/google_app_engine/Dockerfile
821B
yolov5/utils/loggers/
-
yolov5/utils/loggers/clearml/
-
yolov5/utils/loggers/clearml/clearml_utils.py
9.47KB
yolov5/utils/loggers/clearml/hpo.py
5.17KB
yolov5/utils/loggers/clearml/README.md
10.58KB
yolov5/utils/loggers/clearml/__init__.py
-
yolov5/utils/loggers/comet/
-
yolov5/utils/loggers/comet/comet_utils.py
4.71KB
yolov5/utils/loggers/comet/hpo.py
6.77KB
yolov5/utils/loggers/comet/optimizer_config.json
2.37KB
yolov5/utils/loggers/comet/README.md
10.56KB
yolov5/utils/loggers/comet/__init__.py
21.09KB
yolov5/utils/loggers/wandb/
-
yolov5/utils/loggers/wandb/wandb_utils.py
7.95KB
yolov5/utils/loggers/wandb/__init__.py
-
yolov5/utils/loggers/__init__.py
19.78KB
yolov5/utils/loss.py
11.11KB
yolov5/utils/metrics.py
15.13KB
yolov5/utils/plots.py
20.21KB
yolov5/utils/segment/
-
yolov5/utils/segment/augmentations.py
3.68KB
yolov5/utils/segment/dataloaders.py
13.38KB
yolov5/utils/segment/general.py
5.8KB
yolov5/utils/segment/loss.py
9KB
yolov5/utils/segment/metrics.py
5.88KB
yolov5/utils/segment/plots.py
6.53KB
yolov5/utils/segment/__init__.py
-
yolov5/utils/torch_utils.py
21.15KB
yolov5/utils/triton.py
3.7KB
yolov5/utils/__init__.py
3.17KB
yolov5/utils/__pycache__/
-
yolov5/utils/__pycache__/augmentations.cpython-38.pyc
16.5KB
yolov5/utils/__pycache__/autoanchor.cpython-38.pyc
6.82KB
yolov5/utils/__pycache__/dataloaders.cpython-38.pyc
49.1KB
yolov5/utils/__pycache__/downloads.cpython-38.pyc
4.76KB
yolov5/utils/__pycache__/general.cpython-38.pyc
45.55KB
yolov5/utils/__pycache__/metrics.cpython-38.pyc
12.28KB
yolov5/utils/__pycache__/plots.cpython-38.pyc
19.54KB
yolov5/utils/__pycache__/torch_utils.cpython-38.pyc
19.65KB
yolov5/utils/__pycache__/__init__.cpython-38.pyc
3.61KB
yolov5/val.py
29.71KB
yolov5/yolov5s.pt
14.12MB
yolov5/__pycache__/
-
yolov5/__pycache__/export.cpython-38.pyc
56.73KB

资源内容介绍

本项目是一个使用 YOLOv5 模型实现的人群计数 Python 应用。YOLOv5 是一个流行的目标检测模型,以其速度快和准确性高而闻名。通过这个项目,你可以快速部署一个能够识别图像中人数的系统。功能特点:高精度人群计数:利用 YOLOv5 模型的高效目标检测能力,实现对人群的精确计数。实时图像处理:支持从摄像头或视频文件中实时读取图像,并进行人群计数。易于集成:代码结构清晰,易于与其他系统或应用集成。跨平台支持:兼容主流操作系统,包括 Windows、Linux 和 macOS。技术栈:Python:编程语言。YOLOv5:目标检测模型。OpenCV:用于图像处理和显示。
<div align="center"> <p> <a href="https://www.ultralytics.com/events/yolovision" target="_blank"> <img width="100%" src="https://raw.githubusercontent.com/ultralytics/assets/main/yolov8/banner-yolov8.png"></a> </p>[涓枃](https://docs.ultralytics.com/zh) | [頃滉淡鞏碷(https://docs.ultralytics.com/ko) | [鏃ユ湰瑾瀅(https://docs.ultralytics.com/ja) | [袪褍褋褋泻懈泄](https://docs.ultralytics.com/ru) | [Deutsch](https://docs.ultralytics.com/de) | [Fran莽ais](https://docs.ultralytics.com/fr) | [Espa帽ol](https://docs.ultralytics.com/es) | [Portugu锚s](https://docs.ultralytics.com/pt) | [T眉rk莽e](https://docs.ultralytics.com/tr) | [Ti岷縩g Vi峄噒](https://docs.ultralytics.com/vi) | [丕賱毓乇亘賷丞](https://docs.ultralytics.com/ar)<div> <a href="https://github.com/ultralytics/yolov5/actions/workflows/ci-testing.yml"><img src="https://github.com/ultralytics/yolov5/actions/workflows/ci-testing.yml/badge.svg" alt="YOLOv5 CI"></a> <a href="https://zenodo.org/badge/latestdoi/264818686"><img src="https://zenodo.org/badge/264818686.svg" alt="YOLOv5 Citation"></a> <a href="https://hub.docker.com/r/ultralytics/yolov5"><img src="https://img.shields.io/docker/pulls/ultralytics/yolov5?logo=docker" alt="Docker Pulls"></a> <a href="https://discord.com/invite/ultralytics"><img alt="Discord" src="https://img.shields.io/discord/1089800235347353640?logo=discord&logoColor=white&label=Discord&color=blue"></a> <a href="https://community.ultralytics.com/"><img alt="Ultralytics Forums" src="https://img.shields.io/discourse/users?server=https%3A%2F%2Fcommunity.ultralytics.com&logo=discourse&label=Forums&color=blue"></a> <a href="https://reddit.com/r/ultralytics"><img alt="Ultralytics Reddit" src="https://img.shields.io/reddit/subreddit-subscribers/ultralytics?style=flat&logo=reddit&logoColor=white&label=Reddit&color=blue"></a> <br> <a href="https://bit.ly/yolov5-paperspace-notebook"><img src="https://assets.paperspace.io/img/gradient-badge.svg" alt="Run on Gradient"></a> <a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> <a href="https://www.kaggle.com/ultralytics/yolov5"><img src="https://kaggle.com/static/images/open-in-kaggle.svg" alt="Open In Kaggle"></a> </div> <br>YOLOv5 馃殌 is the world's most loved vision AI, representing <a href="https://www.ultralytics.com/">Ultralytics</a> open-source research into future vision AI methods, incorporating lessons learned and best practices evolved over thousands of hours of research and development.We hope that the resources here will help you get the most out of YOLOv5. Please browse the YOLOv5 <a href="https://docs.ultralytics.com/yolov5/">Docs</a> for details, raise an issue on <a href="https://github.com/ultralytics/yolov5/issues/new/choose">GitHub</a> for support, and join our <a href="https://discord.com/invite/ultralytics">Discord</a> community for questions and discussions!To request an Enterprise License please complete the form at [Ultralytics Licensing](https://www.ultralytics.com/license).<div align="center"> <a href="https://github.com/ultralytics"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-github.png" width="2%" alt="Ultralytics GitHub"></a> <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%"> <a href="https://www.linkedin.com/company/ultralytics/"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-linkedin.png" width="2%" alt="Ultralytics LinkedIn"></a> <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%"> <a href="https://twitter.com/ultralytics"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-twitter.png" width="2%" alt="Ultralytics Twitter"></a> <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%"> <a href="https://youtube.com/ultralytics?sub_confirmation=1"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-youtube.png" width="2%" alt="Ultralytics YouTube"></a> <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%"> <a href="https://www.tiktok.com/@ultralytics"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-tiktok.png" width="2%" alt="Ultralytics TikTok"></a> <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%"> <a href="https://ultralytics.com/bilibili"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-bilibili.png" width="2%" alt="Ultralytics BiliBili"></a> <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%"> <a href="https://discord.com/invite/ultralytics"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-discord.png" width="2%" alt="Ultralytics Discord"></a></div></div><br>## <div align="center">YOLOv8 馃殌 NEW</div>We are thrilled to announce the launch of Ultralytics YOLOv8 馃殌, our NEW cutting-edge, state-of-the-art (SOTA) model released at **[https://github.com/ultralytics/ultralytics](https://github.com/ultralytics/ultralytics)**. YOLOv8 is designed to be fast, accurate, and easy to use, making it an excellent choice for a wide range of object detection, image segmentation and image classification tasks.See the [YOLOv8 Docs](https://docs.ultralytics.com/) for details and get started with:[![PyPI version](https://badge.fury.io/py/ultralytics.svg)](https://badge.fury.io/py/ultralytics) [![Downloads](https://static.pepy.tech/badge/ultralytics)](https://pepy.tech/project/ultralytics)```bashpip install ultralytics```<div align="center"> <a href="https://www.ultralytics.com/yolo" target="_blank"> <img width="100%" src="https://raw.githubusercontent.com/ultralytics/assets/main/yolov8/yolo-comparison-plots.png"></a></div>## <div align="center">Documentation</div>See the [YOLOv5 Docs](https://docs.ultralytics.com/yolov5/) for full documentation on training, testing and deployment. See below for quickstart examples.<details open><summary>Install</summary>Clone repo and install [requirements.txt](https://github.com/ultralytics/yolov5/blob/master/requirements.txt) in a [**Python>=3.8.0**](https://www.python.org/) environment, including [**PyTorch>=1.8**](https://pytorch.org/get-started/locally/).```bashgit clone https://github.com/ultralytics/yolov5 # clonecd yolov5pip install -r requirements.txt # install```</details><details><summary>Inference</summary>YOLOv5 [PyTorch Hub](https://docs.ultralytics.com/yolov5/tutorials/pytorch_hub_model_loading/) inference. [Models](https://github.com/ultralytics/yolov5/tree/master/models) download automatically from the latest YOLOv5 [release](https://github.com/ultralytics/yolov5/releases).```pythonimport torch# Modelmodel = torch.hub.load("ultralytics/yolov5", "yolov5s") # or yolov5n - yolov5x6, custom# Imagesimg = "https://ultralytics.com/images/zidane.jpg" # or file, Path, PIL, OpenCV, numpy, list# Inferenceresults = model(img)# Resultsresults.print() # or .show(), .save(), .crop(), .pandas(), etc.```</details><details><summary>Inference with detect.py</summary>`detect.py` runs inference on a variety of sources, downloading [models](https://github.com/ultralytics/yolov5/tree/master/models) automatically from the latest YOLOv5 [release](https://github.com/ultralytics/yolov5/releases) and saving results to `runs/detect`.```bashpython detect.py --weights yolov5s.pt --source 0 # webcam img.jpg # image vid.mp4 # video scre

用户评论 (0)

发表评论

captcha

相关资源

javaweb项目鲜花商城管理系统spring+springMVC+mybatis+mysql-java课程设计毕业设计

采用了Spring、Spring MVC、MyBatis和MySQL**等热门开发框架,专为在校大学生的Java课程设计和毕业设计提供学习参考和实践指导。通过本项目,您将能够学习到如何使用Spring框架搭建高效的后端服务,如何运用MyBatis进行数据持久化操作,以及如何通过Spring MVC实现前后端的交互。

64.53MB40积分

STM32F407 HAL库:双DAC的信号发生器+双ADC采集

源代码

16.75MB36积分

javaweb项目校园社团管理系统spring+springMVC+mybatis+mysql-java课程设计毕业设计

本项目是一个校园社团管理系统,采用Spring、SpringMVC、MyBatis和MySQL技术栈开发,旨在为在校大学生提供高效的社团管理解决方案。系统包括社团信息管理、学生信息管理、通知信息管理、活动信息管理等功能模块,方便社团组织者和成员进行日常管理和信息交流。该源码适合用于Java课程设计和毕业设计,帮助学生深入理解JavaWeb开发的核心技术及应用。无论是Java初学者还是有一定基础的技术爱好者,都可以通过本项目获取宝贵的学习资料和实践经验。通过分析和改进该系统,用户能够提升自己的编程能力和项目管理技能。

87.54MB30积分

10篇代码生成的论文,包括代码评估、代码搜索、代码生成、survey、代码或bug分类

题目类型分区摘要精读链接Comparing large language models and humanprogrammers for generating programming code代码评估arxiv评估七种LLMs在生成编程代码方面的性能,探讨不同提示策略对LLMs编码性能的影响,直接比较LLMs与人类程序员的编程能力,评估LLMs在不同编程语言之间生成和翻译代码的能力,以及考察LLMs的计算效率和从过去错误中学习的能力。A Comparison of the Effectiveness of ChatGPT andCo-Pilot for Generating Quality Python Code代码评估会议包括评估ChatGPT和Copilot在解决LeetCode编程问题上的有效性,探讨ChatGPT在接收到反馈后纠正代码的能力,以及其在提高代码质量和性能方面的潜力。Program Code Generation with Generative AIs代码评估MDPI水刊-Algorithms非SCI比较了人类生成的代码

7.68MB34积分